Quoit Design(分治加排序,最短点数对)

该博客介绍了如何运用分治和排序策略解决寻找二维平面上最短点对距离的问题。首先按横坐标排序,然后对y坐标进行二分查找。考虑三种情况:最短距离在左侧、右侧,以及一个点在两侧。通过遍历和比较,找到可能的最短距离点并更新最小值。
摘要由CSDN通过智能技术生成

题目链接

这道题还是很有难度啊,最后借鉴了别人的题解才写出来😭,总的来说这道题就是排序加二分,首先按照横坐标排序然后再对y坐标二分。即把这些点分成左右两部分,那么最小点的距离就有三种情况:最短距离在左端,最短距离在右端,最短距离一个点在左端,一个点在右端,那么前两种情况很好判断,只要分别计算比较一下打小就可以了,第三种情况就是(可以想象成在点的中间画了一条直线),从左往右扫一遍,如果这个点到直线的距离小于前两种情况下的最小距离,那么我们就认为它是有可能的最小值点,把它列入数组中再计算。
代码如下

#include<iostream>
#include<algorithm>
#include<math.h>
#include<stdio.h>
using namespace std;
#define maxn 100005
struct node
{
   
	double x;
	double y;	
} s[maxn],s2[maxn];
bool cmpx(node a,node b)
{
   
	return a.x<b.x; 
}
bool cmpy(node a2,node b2)
{
   
	return a2.y<b2.y;
}
double dis(node a3,node b3)
{
   
	double disv;
	disv=<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值