Floyd算法是一个经典的动态规划算法。首先我们的目标是寻找从点i到到点j的最短路径。从动态规划的角度来看,我们需要为这个目标重新做一个诠释。
从任意节点i到任意节点j的最短路径不外乎两种可能:1.直接从i到j;2.从i经过若干个节点k到j。所以我们假设Dis(i,j)为节点为节点i到j的最短路径,对于每一个节点k,我们检查Did(i,k)+Dis(k,j)<Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j)=Dis(i,k)+Dis(k,j)。这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径。
代码模板:
void floyd( )
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j];
}
return ;
}
简单样题:
代码:
#include<iostream>
const int maxn=1e9+7;
int a[300][300];
int n,m;
using namespace std;
void floyd( )
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(a[i][j]>a[i][k]+a[k][j])
a[i][j]=a[i][k]+a[k][j];
}
return ;
}
int main( )
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i!=j) a[i][j]=maxn;
else a[i][j]=0;
}
}
for(int i=1;i<=m;i++)
{
int x,y,d;
cin>>x>>y>>d;
if(a[x][y]>d)
a[x][y]=a[y][x]=d;
}
floyd();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
cout<<a[i][j]<<" ";
cout<<endl;
}
return 0;
}