图论——最短路径 Floyd算法

Floyd算法是一个经典的动态规划算法。首先我们的目标是寻找从点i到到点j的最短路径。从动态规划的角度来看,我们需要为这个目标重新做一个诠释。

从任意节点i到任意节点j的最短路径不外乎两种可能:1.直接从i到j;2.从i经过若干个节点k到j。所以我们假设Dis(i,j)为节点为节点i到j的最短路径,对于每一个节点k,我们检查Did(i,k)+Dis(k,j)<Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j)=Dis(i,k)+Dis(k,j)。这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径。

代码模板:

void floyd(	)
{
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
			{
				if(a[i][j]>a[i][k]+a[k][j])
				a[i][j]=a[i][k]+a[k][j];
			}
			return ;
}

简单样题:

在这里插入图片描述

在这里插入图片描述代码:

#include<iostream>
const int maxn=1e9+7;
int a[300][300];
int n,m;
using namespace std;
void floyd(	)
{
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
			{
				if(a[i][j]>a[i][k]+a[k][j])
				a[i][j]=a[i][k]+a[k][j];
			}
			return ;
}
int main( )
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(i!=j) a[i][j]=maxn;
			else a[i][j]=0;
		}
	}
	for(int i=1;i<=m;i++)
	{
		int x,y,d;
		cin>>x>>y>>d;
		if(a[x][y]>d)
		a[x][y]=a[y][x]=d;
	}
	floyd();
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		cout<<a[i][j]<<" ";
		cout<<endl;
	}
		return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值