线性代数总结

一、行列式

行列式的几何意义是列(行)向量所确定的区域的面积或体积. 面积或体积的正负与向量的排列顺序有关.

行列式相关的很多性质都能从面积或体积的角度理解.

D n = ∣ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ∣ = ∑ j 1 j 2 … j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 … a n j n D_n=\begin{vmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{vmatrix}=\sum _{j_{1}j_{2}\ldots j_{n}}\left( -1\right) ^{\tau \left( j_{1}j_{2}\cdots j_{n}\right) }a_{1j_1}a_{2j_2}\ldots a_{nj_n} Dn=a11a21an1a12a22an2a1na2nann=j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn

其中 j 1 j 2 ⋯ j n j_1j_2\cdots j_n j1j2jn 代表 1 ⋯ n 1\cdots n 1n 的一个排列 τ ( j 1 j 2 ⋯ j n ) \tau \left( j_{1}j_{2}\cdots j_{n}\right) τ(j1j2jn) 代表 j 1 j 2 ⋯ j n j_{1}j_{2}\cdots j_{n} j1j2jn​ 的逆序数.

性质

  • D = D T D=D^T D=DT .

  • 交换两列(行),行列式异号.

    两向量位置互换,行列式所代表的体积变号.

    两列(行)相同,行列式为 0 0 0 .

    两向量重合,面积或体积为 0 0 0 .

  • 某列(行) × k \times k ×k ,行列式变为 k D kD kD .

    某向量长度 × k \times k ×k ,面积或体积变为原来的 k k k 倍.

  • ∣ a 1 b 1 c 1 + d 1 a 2 b 2 c 2 + d 2 a 3 b 3 c 3 + d 3 ∣ = ∣ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ∣ + ∣ a 1 b 1 c 1 a 2 b 2 c 2 d 3 d 3 d 3 ∣ \begin{vmatrix} a_{1} & b_{1} & c_{1}+d_{1} \\ a_{2} & b_{2} & c_{2}+d_{2} \\ a_{3} & b_{3} & c_{3}+d_{3} \end{vmatrix} =\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} +\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ d_{3} & d_{3} & d_{3} \end{vmatrix} a1a2a3b1b2b3c1+d1c2+d2c3+d3=a1a2a3b1b2b3c1c2c3+a1a2d3b1b2d3c1c2d3

    向量的可加性.

按行(列)公式

D = ∑ k = 1 n a i k A i k ( i = 1 , 2 , ⋯   , n ) = ∑ k = 1 n a k j A k j ( j = 1 , 2 , ⋯   , n ) , \begin{aligned} D &=\sum_{k=1}^na_{ik}A_{ik}(i=1,2,\cdots,n)\\ &=\sum_{k=1}^na_{kj}A_{kj}(j=1,2,\cdots,n),\\ \end{aligned} D=k=1naikAik(i=1,2,,n)=k=1nakjAkj(j=1,2,,n),

其中 A i j = ( − 1 ) i + j M A_{ij}=(-1)^{i+j}M Aij=(1)i+jM​ 为 a i j a_{ij} aij​ 的代数余子式.

注意
∑ k = 1 n a i k A j k = ∑ k = 1 n a k i A k j = 0 ( i ≠ j ) . \sum_{k=1}^na_{ik}A_{jk}=\sum_{k=1}^na_{ki}A_{kj}=0(i\ne j). k=1naikAjk=k=1nakiAkj=0(i=j).

* V a n d e r m o n d e Vandermonde Vandermonde 行列式

D n = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n ⋮ ⋮ ⋱ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ i ≤ j < i ≤ n ( x i − x j ) D_n=\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{vmatrix} =\prod _{i\leq j <i\leq n}\left( x_{i}-x_{j}\right) Dn=1x1x1n11x2x2n11xnxnn1=ij<in(xixj)

将最后一行 x n x_n xn​​ 消去易得递推式 D n = ∏ 1 ≤ j < n ( x n − x j ) D n − 1 , n > 1 , D 1 = 1 D_n=\underset{1 \le j\lt n}{\prod}\left( x_{n}-x_{j}\right)D_{n-1},n \gt 1,D_1=1 Dn=1j<n(xnxj)Dn1,n>1,D1=1​​ .​​

二、矩阵

矩阵 A m × n A_{m\times n} Am×n 的几何意义是从 n n n 维空间到 m m m 维空间的线性变换,即通过换元法将 n n n 维空间中的向量映射到 m m m​ 维空间中某个向量的一种方式.

矩阵相关的很多性质都能从线性变换的角度理解.

A m × n = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ) A_{m\times n}=\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix} Am×n=a11a21am1a12a22am2a1na2namn

分类

  • 单位矩阵 E E E .
  • 数量矩阵 k E kE kE .
  • 对角矩阵 d i a g ( a 1 , a 2 , ⋯   , a n ) \mathrm{diag}(a_1,a_2,\cdots,a_n) diag(a1,a2,,an) .
  • 三角矩阵:仅上(下)三角元素不全为 0 0 0 .
  • 对称矩阵: A T = A A^T=A AT=A .
  • 反对称矩阵: A T = − A A^T=-A AT=A​​ .
  • 正交矩阵: A T A = E A^TA=E ATA=E .

性质

  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT​ .

  • A , B A,B A,B 为方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB​ .

    线性变换会将区域面积放大行列式倍, 两次线性变换会依次进行放大.

  • A A A 可逆,则 A A − 1 = E AA^{-1}=E AA1=E​ .

    逆矩阵相关的很多性质都能由这一性质导出,如:
    ( A − 1 ) T = ( A T ) − 1 . ∣ A − 1 ∣ = 1 ∣ A ∣ . ⋮ \begin{aligned} &(A^{-1})^T=(A^T)^{-1}.\\ &|A^{-1}|=\dfrac{1}{|A|}.\\ &\vdots \end{aligned} (A1)T=(AT)1.A1=A1.

  • A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE​ .

伴随矩阵相关的很多性质都能由这一性质导出,如:
A ∗ = ∣ A ∣ A − 1 . ( A ∗ ) − 1 = A ∣ A ∣ = ∣ A − 1 ∣ ( A − 1 ) − 1 = ( A − 1 ) ∗ . ( A ∗ ) T = ( A T ) ∗ . ( k A ) ∗ = k n − 1 A ∗ ∣ A ∗ ∣ = ∣ A ∣ n − 1 . ⋮ \begin{aligned} &A^*=|A|A^{-1}.\\ &(A^*)^{-1}=\dfrac{A}{|A|}=|A^{-1}|(A^{-1})^{-1}=(A^{-1})^{*}.\\ &(A^*)^T=(A^T)^*.\\ &(kA)^*=k^{n-1}A^* \\ &|A^*|=|A|^{n-1}.\\ &\vdots \end{aligned} A=AA1.(A)1=AA=A1(A1)1=(A1).(A)T=(AT).(kA)=kn1AA=An1.

  • 初等变换矩阵的性质: E i j − 1 = E i j , E_{ij}^{-1}=E_{ij}, Eij1=Eij, E i − 1 ( k ) = E i ( 1 k ) , E_i^{-1}(k)=E^i(\dfrac 1k), Ei1(k)=Ei(k1), E i j − 1 ( k ) = E i j ( − k ) . E_{ij}^{-1}(k)=E_{ij}(-k). Eij1(k)=Eij(k).​​ ​

    矩阵 A A A 左乘初等矩阵可进行行变换,右乘初等矩阵可进行列变换.

  • 矩阵的秩的性质

    (1) r ( A ) = r ( A T ) = r ( A T A ) r(A)=r(A^T)=r(A^TA) r(A)=r(AT)=r(ATA)​ .
    (2) r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B)\le r(A)+r(B) r(A+B)r(A)+r(B) .
    (3) A B = O , AB=O, AB=O, r ( A ) + r ( B ) ≤ n r(A)+r(B)\le n r(A)+r(B)n .
    (4) r ( A ) = r ( B ) ⇔ A , B r(A)=r(B) \Leftrightarrow A,B r(A)=r(B)A,B 等价.

    (5) r ( A ) = n − 1 ⇔ r ( A ∗ ) = 1 r(A)=n-1\Leftrightarrow r(A^*)=1 r(A)=n1r(A)=1 .

三、向量

设含 m m m​​​ 个 n n n​​​ 维向量的向量组 A : A: A:​​​ α 1 , α 2 , ⋯   , α n \pmb \alpha_1,\pmb \alpha_2,\cdots,\pmb \alpha_n ααα1,ααα2,,αααn​​​ ,且 β = k 1 α 1 + k 2 α 2 + ⋯ + k m α m \pmb \beta=k_1 \pmb \alpha_1+k_2\pmb \alpha_2+\cdots+k_m\pmb \alpha_m βββ=k1ααα1+k2ααα2++kmαααm​​​ .

β \pmb\beta βββ A A A 的一个线性组合 β \pmb\beta βββ 可由 A A A 线性表示.

性质

  • 向量组 A A A​​​ 的一个极大线性无关组可以线性表示 A A A​​ 中的所有向量.

  • 若向量组 A , B A,B A,B​ 可以相互线性表示,说明 A , B A,B A,B 为等价向量组.

向量空间

  • n n n​​​ 维向量空间 R n \mathbb{R}^n Rn​ :全体 n n n​​​​ 维向量的集合. 对加法和数乘封闭.

  • R n \mathbb{R}^n Rn子空间 V V V :​ R n \mathbb{R}^n Rn 的一个对加法和数乘封闭的非空子集. 例:三维向量空间的一个平面、一条直线、一个点都属于 R 3 \mathbb R^3 R3​ 的子空间.

  • V V V​​​ 的一个极大线性无关组可以是一个基底(basis) V V V​ 的维数即为向量组的秩. 例:三维向量空间中的一个平面属于二维向量空间.

  • V V V​ 中的任一向量可由一组基唯一线性表示,线性表示的系数即为这组基下的坐标. 例:平面直角坐标系中 α = a i + b j = ( i , j ) ( a b ) \pmb \alpha=a\pmb i+b\pmb j=\left( \pmb i,\pmb j\right) \begin{pmatrix} a \\ b \end{pmatrix} ααα=aiii+bjjj=(iii,jjj)(ab)​ ,则 α \pmb\alpha ααα​ 在基 ( i , j ) (\pmb i,\pmb j) (iii,jjj)​ 下的坐标为 $ \begin{pmatrix} a \ b \end{pmatrix}$​ .​

  • 若基 A A A 到 基 B B B 的过渡矩阵为 P P P ,即 B = A P B=AP B=AP . 某向量 α \pmb \alpha ααα A A A 下的坐标为 x \pmb x xxx 、在 B B B 下的坐标为 y \pmb y yyy ,则 α = A x = B y ⇒ x = P y \pmb \alpha=A\pmb x=B\pmb y\Rightarrow \pmb x=P\pmb y ααα=Axxx=Byyyxxx=Pyyy .

S c h m i d t Schmidt Schmidt 正交化

施密特正交化的思想很简单:从前往后遍历向量 α \pmb\alpha ααα​​​,将 α i \pmb\alpha_i αααi​​​ 在所有已得到的 β \pmb\beta βββ​​​ 方向上的分量减掉,即可得到 β i \pmb\beta_i βββi​​ .

对于线性无关向量组 α 1 , α 2 , ⋯   , α n \pmb \alpha_1,\pmb \alpha_2,\cdots,\pmb \alpha_n ααα1,ααα2,,αααn​ .

β 1 = α 1 \pmb\beta_1=\pmb\alpha_1 βββ1=ααα1​​​ , β i = α i − ∑ i − 1 j = 1 α i T β j β j T β j β j ,    j = 2 , 3 , ⋯   , n \pmb \beta_i=\pmb \alpha_i-\underset{j=1}{\overset{i-1}{\sum}} \dfrac{\pmb\alpha_i^T\pmb\beta_j}{\pmb\beta_j^T\pmb \beta_j}\pmb\beta_j, \ \ j=2,3,\cdots,n βββi=αααij=1i1βββjTβββjαααiTβββjβββj,  j=2,3,,n​​​​ .

β 1 , β 2 , ⋯   , β n \pmb \beta_1,\pmb \beta_2,\cdots,\pmb \beta_n βββ1,βββ2,,βββn 两两正交.​

四、特征向量与特征值

特征向量的几何意义是线性变换过程中方向保持不变的向量. 整个坐标的变换都是依靠特征向量方向上的伸缩变换实现的,而特征向量伸缩的程度正是由特征值衡量的.

A x = λ x A\pmb x=\lambda \pmb x Axxx=λxxx ,其中 x \pmb x xxx n n n 维列向量,显然 A A A 只可能是一个 n × n n\times n n×n​ 的线性变换.

根据几何意义,满足上式的 x \pmb x xxx 即为特征向量, λ \lambda λ 为其特征值.

计算: 令 ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0 可解出所有特征值,将所求特征值分别代会 A x = λ x A\pmb x=\lambda \pmb x Axxx=λxxx 即可得到特征向量.

尽管优先计算的是特征值,但特征向量才是线性变换的最佳主角.

性质

(1)设 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n​​ 的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn​​ ,则

  • ∑ i λ i = ∑ i a i i \underset{i}{\sum} \lambda_i=\underset{i}{\sum} a_{ii} iλi=iaii .
  • ∏ i λ i = ∣ A ∣ \underset{i}{\prod}\lambda_i=|A| iλi=A​ .

(2) A ∼ B ⇔ ∃ P , P − 1 A P = B A\sim B \Leftrightarrow \exists P,P^{-1}AP=B ABP,P1AP=B .

(3) n n n​ 维矩阵 A A A 可相似对角化的充要条件是 A A A n n n 个线性无关的特征向量.

(4)实对称矩阵一定可相似对角化. 且存在正交矩阵 Q Q Q​ 使 Q T A Q = Λ Q^TAQ=\Lambda QTAQ=Λ​ .

(5)若 A ∼ B A\sim B AB ,则 A , B A,B A,B 具有相同特征值,由此不难推出其它性质.

  • ∣ A ∣ = ∣ B ∣ |A|=|B| A=B​ .
  • ∣ A − λ E ∣ = ∣ B − λ E ∣ |A-\lambda E|=|B-\lambda E| AλE=BλE​ .
  • r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B) .

*线性变换的类型

2 × 2 2\times 2 2×2 的变换矩阵为例

  • 剪切矩阵 ( 1 1 0 1 ) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} (1011)​ .

    有一个特征向量 ( 1 0 ) \begin{pmatrix} 1 \\ 0 \end{pmatrix} (10)​​ ,其特征值为 1 1 1​​ . 整个坐标平面变得倾斜,但 x x x​​ 轴方向长度均不变.

  • 初等矩阵 ( 0 1 1 0 ) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (0110)​ .

    有两个线性无关的特征向量 ( − 1 1 ) , ( 1 1 ) \begin{pmatrix} -1 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 1 \end{pmatrix} (11),(11) ,分别对应特征值 − 1 , 1 -1,1 1,1 . ​表现为整个坐标平面绕直线 y = x y=x y=x 进行翻转.

  • 旋转矩阵 ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} (cosθsinθsinθcosθ)​ .

    没有实特征向量,也没有实特征值. 表现为坐标轴的旋转.

五、二次型

n n n​ 元二次函数
f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j ,   ( a i j = a j i ) = x T A x . \begin{aligned} f(x_1,x_2,\cdots,x_n) &=\sum_{i=1}^n\sum_{j=1}^na_{ij}x_ix_j,\ (a_{ij}=a_{ji})\\ &=\pmb x^TA\pmb x. \end{aligned} f(x1,x2,,xn)=i=1nj=1naijxixj, (aij=aji)=xxxTAxxx.
其中 x = ( x 1 x 2 ⋮ x n ) \pmb x=\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} xxx=x1x2xn , A = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ) A=\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{pmatrix} A=a11a21an1a12a22an2a1na2nann A T = A A^T=A AT=A.

f f f​ 为二次型 A A A f f f​ 的矩阵.

  • A A A 为对角阵,则 f f f 为标准形.
  • A A A 为对角阵且对角线元素仅含 − 1 , 0 , 1 -1,0,1 1,0,1 ,则 f f f 为规范形.

合同变换:经过可逆线性变换(换元) x = C y \pmb x=C\pmb y xxx=Cyyy​ 后二次型可化为 f = y T B y f=\pmb y^TB\pmb y f=yyyTByyy​ . 其中 B = C T A C B=C^TAC B=CTAC​ . 称 A , B A,B A,B合同 ,记作 A ≃ B A\simeq B AB​​.

性质

(1) r ( f ) = r ( A ) r(f)=r(A) r(f)=r(A) .

(2) A A A​​ 为实对称矩阵,因此必存在正交矩阵 Q Q Q​ ,使 Q T A Q = Λ Q^TA Q=\Lambda QTAQ=Λ​ 为对角矩阵. 显然 A ∼ Λ , A ≃ Λ A\sim \Lambda,A\simeq \Lambda AΛ,AΛ​​ , 通过正交变换 x = Q y \pmb x=Q\pmb y xxx=Qyyy​ 可将 f f f​ 化为标准形.

(3)惯性定理 f f f​ 的所有标准形中正负惯性指数 p , q p,q p,q​​ 一定是相同的. 显然 r ( f ) = p + q r(f)=p+q r(f)=p+q​​ .

(4)

  • A A A​​ 为正定矩阵(特征值全为正),则 x ≠ 0 \pmb x \ne 0 xxx=0​ 时恒有 f ( x ) > 0 f(\pmb x)\gt 0 f(xxx)>0​​​​​ .

    正定矩阵的判别:各阶顺序主子式均为正.

  • A A A​ 为负定矩阵(特征值全为负),则 x ≠ 0 \pmb x \ne 0 xxx=0​ 时恒有 f ( x ) < 0 f(\pmb x)\lt 0 f(xxx)<0​ .

    负定矩阵的判别:奇数阶顺序主子式为负,偶数阶顺序主子式为正.

  • A A A​ 为不定矩阵(特征值有正有负),则 x ≠ 0 \pmb x \ne 0 xxx=0​ 时 f ( x ) f(\pmb x) f(xxx)​ 有正有负.

  • A A A​ 为半正定矩阵(特征值非负),则恒有 f ( x ) ≥ 0 f(\pmb x)\ge 0 f(xxx)0​​ .

  • A A A​ 为半正定矩阵(特征值非正),则恒有 f ( x ) ≤ 0 f(\pmb x)\le 0 f(xxx)0​ .

*二次型的图像

由于所有二次型都可通过正交变换化为标准形,而标准形只是规范形在自由基方向上的伸缩变换,因此规范形的形状可以反映所有二次型的形状.

一元二次型

(1) f ( x ) = x 2 f(x)=x^2 f(x)=x2​ , p = 1 , q = 0 p=1,q=0 p=1,q=0​ ,因此 x ≠ 0 x\ne 0 x=0​ 时恒有 f > 0 f\gt 0 f>0​​ .(正定二次型)

f ( x ) = 1 f(x)=1 f(x)=1 的图像为一维坐标系中的两个点.

(2) f ( x ) = − x 2 f(x)=-x^2 f(x)=x2​​​ , p = 0 , q = 1 p=0,q=1 p=0,q=1​​​ ,因此 x ≠ 0 x\ne 0 x=0​​​ 时恒有 f < 0 f\lt 0 f<0​​​​ .(负定二次型)

f ( x ) = − 1 f(x)=-1 f(x)=1​ 的图像为一维坐标系中的两个点.

二元二次型

(1) f ( x , y ) = x 2 + y 2 f(x,y)=x^2+y^2 f(x,y)=x2+y2​ , p = 2 , q = 0 p=2,q=0 p=2,q=0​ ,因此 x ≠ 0 x\ne0 x=0​ 时恒有 f > 0 f\gt 0 f>0​​​ .​(正定二次型)

f ( x , y ) = 1 f(x,y)=1 f(x,y)=1 是二维坐标系中的单位圆.

(2) f ( x , y ) = − x 2 − y 2 f(x,y)=-x^2-y^2 f(x,y)=x2y2 p = 0 , q = 2 p=0,q=2 p=0,q=2 ,因此 x ≠ 0 x\ne 0 x=0 时恒有 f < 0 f\lt 0 f<0​ .(负定二次型)

f ( x , y ) = 1 f(x,y)=1 f(x,y)=1 是二维坐标系中的单位圆.

(3) f ( x , y ) = x 2 − y 2 f(x,y)=x^2-y^2 f(x,y)=x2y2 p = 1 , q = 1 p=1,q=1 p=1,q=1 ,因此 x ≠ 0 x\ne 0 x=0 f f f​ 有正有负.(不定二次型)

  • f ( x , y ) f(x,y) f(x,y)​ 的函数图形实际上是一个双曲抛物面(马鞍面).
  • f ( x , y ) = 1 f(x,y)=1 f(x,y)=1​ 是二维坐标系中焦点在 x x x​ 轴上的双曲线.
  • f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 是二维坐标系中的曲线 y = ± x y=\pm x y=±x .
  • f ( x , y ) = − 1 f(x,y)=-1 f(x,y)=1 是二维坐标系中焦点在 y y y 轴上的双曲线.

(4) f ( x , y ) = x 2 f(x,y)=x^2 f(x,y)=x2​ , p = 1 , q = 0 p=1,q=0 p=1,q=0 ,因此恒有 f ≥ 0 f \ge 0 f0 .(半正定二次型)

(5) f ( x , y ) = − x 2 f(x,y)=-x^2 f(x,y)=x2 p = 0 , q = 1 p=0,q=1 p=0,q=1 ,因此恒有 f ≤ 0 f\le 0 f0 .(半负定二次型)

三元二次型

三元二次型的函数图像无法直接描述,但是可以通过它在三维空间的投影间接感受.

(1) f ( x , y , z ) = x 2 + y 2 + z 2 f(x,y,z)=x^2+y^2+z^2 f(x,y,z)=x2+y2+z2 是正定二次型.

f ( x , y , z ) = 1 f(x,y,z)=1 f(x,y,z)=1​ 是半径为 1 1 1​ 的球面.

(2) f ( x , y , z ) = − x 2 − y 2 − z 2 f(x,y,z)=-x^2-y^2-z^2 f(x,y,z)=x2y2z2​ 是负定二次型.

f ( x , y , z ) = − 1 f(x,y,z)=-1 f(x,y,z)=1 是半径为 1 1 1 的球面.

(3) f ( x , y , z ) = x 2 + y 2 − z 2 f(x,y,z)=x^2+y^2-z^2 f(x,y,z)=x2+y2z2​​​ 是不定二次型.

  • f ( x , y , z ) = 1 f(x,y,z)=1 f(x,y,z)=1​ 是绕 z z z 轴的旋转单叶双曲面.
  • f ( x , y , z ) = 0 f(x,y,z)=0 f(x,y,z)=0​ 是围绕 z z z 轴的圆锥面.
  • f ( x , y , z ) = − 1 f(x,y,z)=-1 f(x,y,z)=1 是绕 z z z​​​​ 轴的旋转双叶双曲面.

注: u = x 2 − y 2 − z 2 , v = x 2 − y 2 u=x^2-y^2-z^2,v=x^2-y^2 u=x2y2z2,v=x2y2 也是不定二次型.

(4) f ( x , y , z ) = x 2 + y 2 f(x,y,z)=x^2+y^2 f(x,y,z)=x2+y2 f ( x , y , z ) = x 2 f(x,y,z)=x^2 f(x,y,z)=x2 是半正定二次型.

(5) f ( x , y , z ) = − x 2 − y 2 f(x,y,z)=-x^2-y^2 f(x,y,z)=x2y2 f ( x , y , z ) = − x 2 f(x,y,z)=-x^2 f(x,y,z)=x2 是半负定二次型.

六、应用

线性方程组

齐次

A x = 0 A\pmb x=0 Axxx=0​ 为齐次线性方程组. 其中 A = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ) A=\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix} A=a11a21am1a12a22am2a1na2namn​ , x = ( x 1 x 2 ⋮ x n ) \pmb x=\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} xxx=x1x2xn​ .

方程组的几何意义可以是: A A A​​ 的所有行向量与 x \pmb x xxx​​ 的内积为 0 0 0​​ ,即与 A A A​​ 的所有行向量均垂直的向量一定是该方程组的一个解.

A A A 的所有行向量占据的空间维度是 r ( A ) r(A) r(A) ,因此 x \pmb x xxx 只可能位于剩下的 n − r ( A ) n-r(A) nr(A)​ 维,方程组有且仅有 n − r ( A ) n-r(A) nr(A)​ 个线性无关的解向量.

求解方法:将 A A A 化为行最简可得等价方程组,进而得到原方程组的通解.

非齐次

A x = β A\pmb x=\pmb \beta Axxx=βββ​ 为非齐次方程组. 其中 A = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ) A=\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix} A=a11a21am1a12a22am2a1na2namn​ , x = ( x 1 x 2 ⋮ x n ) \pmb x=\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} xxx=x1x2xn​, β = ( b 1 b 2 ⋮ b n ) \pmb \beta=\begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix} βββ=b1b2bn​​ .

方程组的一个几何意义可以是: β \pmb\beta βββ 可由 A A A 的列向量线性表示.

r ( A ) ≠ r ( A , β ) r(A)\ne r(A,\pmb\beta) r(A)=r(A,βββ) ,方程组无解.

r ( A ) = r ( A , β ) = n r(A)= r(A,\pmb\beta)=n r(A)=r(A,βββ)=n​ ,方程组有且仅有唯一解.

r ( A ) = r ( A , β ) < n r(A)= r(A,\pmb\beta)<n r(A)=r(A,βββ)<n ,方程组有无穷解,有且仅有 n − r ( A ) + 1 n-r(A)+1 nr(A)+1 个线性无关的解向量.

求解方法:若 A x = 0 A\pmb x=0 Axxx=0 的通解为 ξ \pmb \xi ξξξ ,存在特解使 A η ∗ = β A\pmb\eta^*=\pmb\beta Aηηη=βββ ,则 A x = β A\pmb x=\pmb \beta Axxx=βββ 的通解为 ξ + η ∗ \pmb\xi+\pmb\eta^* ξξξ+ηηη .

C r a m e r Cramer Cramer 法则

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases}a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=b_1\\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=b_2\\ \vdots \\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots +a_{nn}x_{n}=b_n\end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn

D = ∣ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{vmatrix} D=a11a21an1a12a22an2a1na2nann​​ , D i = 将D中的第i列 [ a 1 i a 2 i ⋮ a n i ] 替换为 [ b 1 b 2 ⋮ b n ]   , i = 1 , 2 , ⋯ n D_i=\text{将D中的第i列}\begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{bmatrix}\text{替换为}\begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}\ ,i=1,2,\cdots n Di=D中的第ia1ia2iani替换为b1b2bn ,i=1,2,n​​​ .

D ≠ 0 D\ne 0 D=0​ ,则方程组的解为 x i = D i D   , i = 1 , 2 , ⋯   , n x_i=\dfrac{D_i}{D}\ ,i=1,2,\cdots,n xi=DDi ,i=1,2,,n​ .

克拉默法则的几何意义

将方程组写为 A x = β A\pmb x=\pmb \beta Axxx=βββ 的形式,显然 x \pmb x xxx β \pmb \beta βββ 在基 A = ( α 1 , α 2 , ⋯   , α n ) A=(\pmb \alpha_1,\pmb \alpha_2,\cdots,\pmb \alpha_n) A=(ααα1,ααα2,,αααn) 下的坐标.

于是 β = x 1 α 1 + x 2 α 2 + ⋯ + x n α n \pmb \beta=x_1 \pmb \alpha_1+x_2\pmb \alpha_2+\cdots+x_n\pmb \alpha_n βββ=x1ααα1+x2ααα2++xnαααn​​ .

D i D_i Di 代表向量 β \pmb\beta βββ α i \pmb \alpha_i αααi 以外的其余向量所围成的区域的体积.

D D D 代表基 A A A 的所有向量围成的区域的体积.

D i D \dfrac{D_i}{D} DDi β \pmb\beta βββ α i \pmb \alpha_i αααi 方向上的投影与 ∥ α i ∥ \left\| \pmb \alpha_i\right\| αααi 的比值,即 β \pmb \beta βββ 在该方向上的坐标值 x i x_i xi .

事实上, 通过简单的计算也可以证明这一点:
D i = ∣ α 1 , ⋯   , α i − 1 , β , α i + 1 , ⋯   , α n ∣ = ∣ α 1 , ⋯   , α i − 1 , x i α i , α i + 1 , ⋯   , α n ∣ = x i ∣ α 1 , ⋯   , α i − 1 , α i , α i + 1 , ⋯   , α n ∣ = x i D . \begin{aligned} D_i &=|\pmb \alpha_1,\cdots,\pmb \alpha_{i-1},\pmb \beta,\pmb \alpha_{i+1},\cdots,\pmb \alpha_n|\\ &=|\pmb \alpha_1,\cdots,\pmb \alpha_{i-1},x_i\pmb \alpha_i,\pmb \alpha_{i+1},\cdots,\pmb \alpha_n|\\ &=x_i|\pmb \alpha_1,\cdots,\pmb \alpha_{i-1},\pmb \alpha_i,\pmb \alpha_{i+1},\cdots,\pmb \alpha_n|\\ &=x_iD. \end{aligned} Di=ααα1,,αααi1,βββ,αααi+1,,αααn=ααα1,,αααi1,xiαααi,αααi+1,,αααn=xiααα1,,αααi1,αααi,αααi+1,,αααn=xiD.

求解 F i b o n a c c i Fibonacci Fibonacci 数列的通项公式

F i b o n a c c i Fibonacci Fibonacci 数列: F 0 = 0 , F 1 = 1 , F n = F n − 1 + F n − 2 ( n ≥ 2 ) F_0=0,F_1=1,F_n=F_{n-1}+F_{n-2}(n\ge 2) F0=0,F1=1,Fn=Fn1+Fn2(n2)​ .

A = ( 1 1 1 0 ) A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} A=(1110) ,则​
( F n + 1 F n ) = A ( F n F n − 1 ) = A 2 ( F n − 1 F n − 2 ) = ⋯ = A n ( F 1 F 0 ) . \begin{aligned} \begin{pmatrix} F_{n+1} \\ F_{n} \end{pmatrix} &=A\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} =A^{2}\begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} =\cdots =A^{n}\begin{pmatrix} F_{1} \\ F_{0} \end{pmatrix}. \end{aligned} (Fn+1Fn)=A(FnFn1)=A2(Fn1Fn2)==An(F1F0).
利用矩阵相似对角化可求得
A n = ( ( 1 + 5 2 ) n + 1 − ( 1 − 5 2 ) n + 1 5 ( 1 + 5 2 ) n − ( 1 − 5 2 ) n 5 ( 1 + 5 2 ) n − ( 1 − 5 2 ) n 5 ( 1 + 5 2 ) n − 1 − ( 1 − 5 2 ) n − 1 5 ) . A^n= \begin{pmatrix} \dfrac{\left( \dfrac{1+\sqrt{5}}{2}\right) ^{n+1} -\left( \dfrac{1-\sqrt{5}}{2}\right) ^{n+1}}{\sqrt{5}} & \dfrac{\left( \dfrac{1+\sqrt{5}}{2}\right) ^{n} -\left( \dfrac{1-\sqrt{5}}{2}\right) ^{n}}{\sqrt{5}} \\ \dfrac{\left( \dfrac{1+\sqrt{5}}{2}\right) ^{n} -\left( \dfrac{1-\sqrt{5}}{2}\right) ^{n}}{\sqrt{5}} & \dfrac{\left( \dfrac{1+\sqrt{5}}{2}\right) ^{n-1} -\left( \dfrac{1-\sqrt{5}}{2}\right) ^{n-1}}{\sqrt{5}} \\ \end{pmatrix}. An=5 (21+5 )n+1(215 )n+15 (21+5 )n(215 )n5 (21+5 )n(215 )n5 (21+5 )n1(215 )n1.
于是 F n = 1 5 ( 1 + 5 2 ) n − 1 5 ( 1 − 5 2 ) n F_n=\dfrac{1}{\sqrt{5}}\left( \dfrac{1+\sqrt{5}}{2}\right) ^{n}-\dfrac{1}{\sqrt{5}}\left( \dfrac{1-\sqrt{5}}{2}\right) ^{n} Fn=5 1(21+5 )n5 1(215 )n n ∈ N n\in \mathrm{N} nN.​

更多应用

运用二次型判断多元函数的极值点

利用行列式对重积分进行换元

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值