第十二届蓝桥杯大赛软件赛省赛(C++研究生组)
A: 卡片
同 大学B组 试题 B .
B: 直线
同 大学B组 试题 C .
C: 货物摆放
同 大学B组 试题 D .
D: 路径
同 大学B组 试题 E .
E: 回路计数
动态规划或者记忆化搜索.
f s , i f_{s,i} fs,i 代表在已经访问过集合 s s s 中顶点的前提下目前处于顶点 i i i 的方案数.
递归终止条件可设为 f { i } , i = 1 f_{\{i\},i}=1 f{i},i=1 .
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int n = 21;
long long f[1 << n][n]; // f[s][i] 代表在状态 s 下到达点 i 的方案数
bool mp[n][n];
long long dfs(int s, int u) {
if (!(s & s - 1)) return s >> u;
if (f[s][u] != -1) return f[s][u];
f[s][u] = 0;
for (int v = 0; v < n; ++v) {
if (!(s >> v & 1) || !mp[v][u]) continue;
f[s][u] += dfs(s ^ (1 << u), v);
}
return f[s][u];
}
int main()
{
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
if (__gcd(i + 1, j + 1) == 1) mp[i][j] = mp[j][i] = true;
}
}
memset(f, -1, sizeof(f));
cout << dfs((1 << n) - 1, 0) << endl; // 881012367360
return 0;
}
F: 时间显示
同 大学B组 试题 F .
G: 砝码称重
同 大学B组 试题 G .
H: 异或数列
令 c = ⨁ i = 1 n X i c=\bigoplus\limits_{i=1}^nX_i c=i=1⨁nXi .
游戏结束之后,一定有 a ⊕ b = c a \oplus b=c a⊕b=c . 平局当且仅当 a ⊕ b = 0 a \oplus b=0 a⊕b=0 ,当且仅当 c = 0 c=0 c=0 .
下面讨论 c ≠ 0 c\ne 0 c=0 的情况.
记 a = a 19 a 18 ⋯ a 0 a=a_{19}a_{18}\cdots a_0 a=a19a18⋯a0, b = b 19 b 18 ⋯ b 0 b=b_{19}b_{18}\cdots b_0 b=b19b18⋯b0 , c = a 19 a 18 ⋯ a 0 c=a_{19}a_{18}\cdots a_0 c=a19a18⋯a0.
考虑 a , b , c a,b,c a,b,c 的第 i i i 位:
- 若 c i = 0 c_i=0 ci=0 ,则 a i = b i a_i=b_i ai=bi .
- 若 c i ≠ 0 c_i\ne 0 ci=0 ,则 a i ≠ b i a_i \ne b_i ai=bi .
因此 ∃ k ∈ { 19 , 18 , ⋯ , 0 } , \exists k\in \{19,18,\cdots,0\}, ∃k∈{19,18,⋯,0}, 使得 ∀ i > k ( c i = 0 ) , c k = 1 \forall i\gt k(c_i=0),c_k=1 ∀i>k(ci=0),ck=1 . 容易证明 a > b ⇔ a k > b k a\gt b\Leftrightarrow a_k\gt b_k a>b⇔ak>bk , a < b ⇔ a k < b k a\lt b\Leftrightarrow a_k \lt b_k a<b⇔ak<bk .
第 k k k 位为 1 1 1 的 X X X 一定有奇数个,于是
- 若 n n n 为奇数, A l i c e Alice Alice 先手取一个 k k k 位为 1 1 1 的数给自己,此时剩下的 k k k 位为 1 1 1 和为 0 0 0 的数均为偶数个,之后无论 B o b Bob Bob 取哪一类数给谁, A l i c e Alice Alice 都可以跟着做. 此时 A l i c e Alice Alice 必胜.
- 若 n n n 为偶数, A l i c e Alice Alice 先手必须取 k k k 位为 1 1 1 的数给自己(否则将转化为 n n n 为奇数先手必胜的情况,使得 B o b Bob Bob 必胜). 此时若只剩下 k k k 位为 0 0 0 的数,则 A l i c e Alice Alice 必胜;否则 B o b Bob Bob 取出一个 k k k 位为 0 0 0 的数,剩下的 k k k 位为 1 1 1 和为 0 0 0 的数均为偶数个,之后 A l i c e Alice Alice 取 0 0 0 则 B o b Bob Bob 取 0 0 0 , A l i c e Alice Alice 取 1 1 1 则 B o b Bob Bob 取 1 1 1 ,因为 A l i c e Alice Alice 取 1 1 1 总会导致 a , b a,b a,b 的 k k k 位相同,而 B o b Bob Bob 取 1 1 1 总会导致 a , b a,b a,b 的 k k k 位不同,所以 B o b Bob Bob 取 1 1 1 时总可以做出对自己有利决策,此时 B o b Bob Bob 必胜.
时间复杂度 O ( n ) O(n) O(n) .
#include <iostream>
#include <vector>
#include <functional>
using namespace std;
int main()
{
int T;
scanf("%d", &T);
while (T--) {
int n;
scanf("%d", &n);
vector<int> a(n);
for (auto &p : a) scanf("%d", &p);
int t = 0;
for (auto x : a) t ^= x;
if (t == 0) {
puts("0");
continue;
}
if (n & 1) {
puts("1");
continue;
}
while (t & (t - 1)) t = t & (t - 1);
int cnt = 0;
for (auto x : a) if (x & t) ++cnt;
puts(cnt == 1 ? "1" : "-1");
}
return 0;
}
I: 双向排序
同 大学B组 试题 I .
J: 分果果
参考:
- https://blog.csdn.net/AC__dream/article/details/129431299
- https://www.acwing.com/file_system/file/content/whole/index/content/8208403/
动态规划.
小朋友是无序的,不过为了探讨方便,不妨人为规定一个顺序:第 i − 1 i-1 i−1 个小朋友被分到的最后一包糖果的编号小于等于第 i i i 个小朋友被分到的最后一包糖果的编号. 容易证明,这样的规定对本题答案没有影响.
记 l b lb lb 为 m m m 个小朋友被分到糖果重量的下界,于是 1 ≤ l b ≤ ⌊ 2 s n m ⌋ 1\le lb\le \lfloor\frac{2s_n}{m}\rfloor 1≤lb≤⌊m2sn⌋ . 其中 s i = ∑ t = 1 i w t s_i=\sum\limits_{t=1}^{i}w_t si=t=1∑iwt .
对于每一个 l b lb lb ,记 f i , j , k f_{i,j,k} fi,j,k 代表在将前 j j j 包糖果分给前 i i i 个小朋友,且第 i − 1 i-1 i−1 个小朋友被分到的最后一包糖果编号不超过 k k k 的条件下,前 i i i 个小朋友被分到糖果重量的最大值( l b lb lb 只是一个下界,不一定是最小值). 其中 j ≥ ⌈ i 2 ⌉ , ⌈ i − 1 2 ⌉ ≤ k ≤ j j\ge\lceil\frac i2\rceil,\lceil\frac {i-1}2\rceil\le k\le j j≥⌈2i⌉,⌈2i−1⌉≤k≤j .
初始化 f i , j , k = ∞ , f 0 , 0 , 0 = l b f_{i,j,k}=\infty,f_{0,0,0}=lb fi,j,k=∞,f0,0,0=lb ,则
f i , j , k = { max ( f i − 1 , 0 , 0 , s j ) , i ≥ 1 , j ≥ ⌈ i 2 ⌉ , k = 0 min ( f i , j , k − 1 , min t ≤ k s j − s t ≥ l b max ( f i − 1 , k , t , s j − s t ) ) , i ≥ 1 , j ≥ ⌈ i 2 ⌉ , 1 ≤ k ≤ j . f_{i,j,k}= \begin{cases} \max(f_{i-1,0,0},s_j),&i\ge 1,j\ge\lceil\frac i2\rceil,k=0\\ \min(f_{i,j,k-1},\min\limits_{\substack{t \le k \\ s_j-s_t\ge lb}}\max(f_{i-1,k,t},s_j-s_t)),&i\ge 1,j\ge\lceil\frac i2\rceil,1\le k\le j. \end{cases} fi,j,k=⎩ ⎨ ⎧max(fi−1,0,0,sj),min(fi,j,k−1,t≤ksj−st≥lbminmax(fi−1,k,t,sj−st)),i≥1,j≥⌈2i⌉,k=0i≥1,j≥⌈2i⌉,1≤k≤j.
由于随着 t t t 值的增大, f i − 1 , k , t f_{i-1,k,t} fi−1,k,t 与 s j − s t s_j-s_t sj−st 都不会增大,所以 min t ≤ k s j − s t ≥ l b max ( f i − 1 , k , t , s j − s t ) = max ( f i − 1 , k , p , s j − s p ) \min\limits_{\substack{t \le k \\ s_j-s_t\ge lb}}\max(f_{i-1,k,t},s_j-s_t)=\max(f_{i-1,k,p},s_j-s_p) t≤ksj−st≥lbminmax(fi−1,k,t,sj−st)=max(fi−1,k,p,sj−sp) ,其中 p p p 是满足条件的最大的 t t t .
又由于 i , j i,j i,j 不变时,随着 k k k 值的增大, p p p 值不会减小,因此求 p p p 的均摊时间复杂度为 O ( 1 ) O(1) O(1) .
于是求 f f f 的时间复杂度为 O ( n 2 m ) O(n^2m) O(n2m) .
min l b ( f m , n , n − l b ) \min\limits_{lb}(f_{m,n,n}-lb) lbmin(fm,n,n−lb) 即为结果.
总的时间复杂度为 O ( 2 s n m ⋅ n 2 m ) = O ( s n ⋅ n 2 ) O(\frac{2s_n}{m}\cdot n^2 m)=O(s_n\cdot n^2) O(m2sn⋅n2m)=O(sn⋅n2) .
编程计算 f f f 时不用特别注意 j , k j,k j,k 的范围,因为不合法状态已被记为 ∞ \infty ∞ ,从不合法的状态转移一定不会使结果更优.
如果使用 vector
,在 AcWing 上提交容易超时.
#include <iostream>
#include <functional>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 101, M = 51;
int w[N], s[N];
int f[M][N][N]; // 在 mi 的限制下,f[i][j][k] 代表前 i 个人分配前 j 包糖果,且第 i - 1 个人的最后一包糖果不超过 k 的方案的最大值的最小值
bool vis[N * N];
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf("%d", &w[i]);
s[i] = s[i - 1] + w[i];
for (int j = 0; j < i; ++j) {
vis[s[i] - s[j]] = true;
}
}
int ans = s[n];
for (int lb = 1; lb <= s[n] * 2 / m; ++lb) {
if (!vis[lb]) continue;
memset(f, 0x3f, sizeof f);
f[0][0][0] = lb;
for (int i = 1; i <= m; ++i) {
for (int j = (i + 1 >> 1); j <= n; ++j) {
if (s[j] < lb) continue;
f[i][j][0] = max(f[i - 1][0][0], s[j]);
int p = 0;
for (int k = max(1, i >> 1); k <= j; ++k) {
while (p <= k && s[j] - s[p] >= lb) ++p;
--p;
f[i][j][k] = min(f[i][j][k - 1], max(f[i - 1][k][p], s[j] - s[p]));
}
}
}
ans = min(ans, f[m][n][n] - lb);
}
printf("%d", ans);
}
值得一提的是,当 n × 2 < m n\times 2 \lt m n×2<m 时,此题无解.