第十二届蓝桥杯大赛软件赛省赛(C++研究生组)

第十二届蓝桥杯大赛软件赛省赛(C++研究生组)

A: 卡片

大学B组 试题 B .

B: 直线

大学B组 试题 C .

C: 货物摆放

大学B组 试题 D .

D: 路径

大学B组 试题 E .

E: 回路计数

动态规划或者记忆化搜索.

f s , i f_{s,i} fs,i 代表在已经访问过集合 s s s 中顶点的前提下目前处于顶点 i i i 的方案数.

递归终止条件可设为 f { i } , i = 1 f_{\{i\},i}=1 f{i},i=1 .

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int n = 21;
long long f[1 << n][n];  // f[s][i] 代表在状态 s 下到达点 i 的方案数
bool mp[n][n];
long long dfs(int s, int u) {
    if (!(s & s - 1)) return s >> u;
    if (f[s][u] != -1) return f[s][u];
    f[s][u] = 0;
    for (int v = 0; v < n; ++v) {
        if (!(s >> v & 1) || !mp[v][u]) continue;
        f[s][u] += dfs(s ^ (1 << u), v);
    }
    return f[s][u];
}

int main()
{
    for (int i = 0; i < n; ++i) {
        for (int j = i + 1; j < n; ++j) {
            if (__gcd(i + 1, j + 1) == 1) mp[i][j] = mp[j][i] = true;
        }
    }
    memset(f, -1, sizeof(f));
    cout << dfs((1 << n) - 1, 0) << endl;  // 881012367360
    return 0;
}

F: 时间显示

大学B组 试题 F .

G: 砝码称重

大学B组 试题 G .

H: 异或数列

c = ⨁ i = 1 n X i c=\bigoplus\limits_{i=1}^nX_i c=i=1nXi .

游戏结束之后,一定有 a ⊕ b = c a \oplus b=c ab=c . 平局当且仅当 a ⊕ b = 0 a \oplus b=0 ab=0 ,当且仅当 c = 0 c=0 c=0 .

下面讨论 c ≠ 0 c\ne 0 c=0 的情况.

a = a 19 a 18 ⋯ a 0 a=a_{19}a_{18}\cdots a_0 a=a19a18a0 b = b 19 b 18 ⋯ b 0 b=b_{19}b_{18}\cdots b_0 b=b19b18b0 c = a 19 a 18 ⋯ a 0 c=a_{19}a_{18}\cdots a_0 c=a19a18a0.

考虑 a , b , c a,b,c a,b,c 的第 i i i 位:

  • c i = 0 c_i=0 ci=0 ,则 a i = b i a_i=b_i ai=bi .
  • c i ≠ 0 c_i\ne 0 ci=0 ,则 a i ≠ b i a_i \ne b_i ai=bi .

因此 ∃ k ∈ { 19 , 18 , ⋯   , 0 } , \exists k\in \{19,18,\cdots,0\}, k{19,18,,0}, 使得 ∀ i > k ( c i = 0 ) , c k = 1 \forall i\gt k(c_i=0),c_k=1 i>k(ci=0),ck=1 . 容易证明 a > b ⇔ a k > b k a\gt b\Leftrightarrow a_k\gt b_k a>bak>bk a < b ⇔ a k < b k a\lt b\Leftrightarrow a_k \lt b_k a<bak<bk .

k k k 位为 1 1 1 X X X 一定有奇数个,于是

  • n n n 为奇数, A l i c e Alice Alice 先手取一个 k k k 位为 1 1 1 的数给自己,此时剩下的 k k k 位为 1 1 1 和为 0 0 0 的数均为偶数个,之后无论 B o b Bob Bob 取哪一类数给谁, A l i c e Alice Alice 都可以跟着做. 此时 A l i c e Alice Alice 必胜.
  • n n n 为偶数, A l i c e Alice Alice 先手必须取 k k k 位为 1 1 1 的数给自己(否则将转化为 n n n 为奇数先手必胜的情况,使得 B o b Bob Bob 必胜). 此时若只剩下 k k k 位为 0 0 0 的数,则 A l i c e Alice Alice 必胜;否则 B o b Bob Bob 取出一个 k k k 位为 0 0 0 的数,剩下的 k k k 位为 1 1 1 和为 0 0 0 的数均为偶数个,之后 A l i c e Alice Alice 0 0 0 B o b Bob Bob 0 0 0 A l i c e Alice Alice 1 1 1 B o b Bob Bob 1 1 1 ,因为 A l i c e Alice Alice 1 1 1 总会导致 a , b a,b a,b k k k 位相同,而 B o b Bob Bob 1 1 1 总会导致 a , b a,b a,b k k k 位不同,所以 B o b Bob Bob 1 1 1 时总可以做出对自己有利决策,此时 B o b Bob Bob 必胜.

时间复杂度 O ( n ) O(n) O(n) .

#include <iostream>
#include <vector>
#include <functional>

using namespace std;
int main()
{
    int T;
    scanf("%d", &T);
    while (T--) {
        int n;
        scanf("%d", &n);
        vector<int> a(n);
        for (auto &p : a) scanf("%d", &p);
        int t = 0;
        for (auto x : a) t ^= x;
        if (t == 0) {
            puts("0");
            continue;
        }
        if (n & 1) {
            puts("1");
            continue;
        }
        while (t & (t - 1)) t = t & (t - 1);
        int cnt = 0;
        for (auto x : a) if (x & t) ++cnt;
        puts(cnt == 1 ? "1" : "-1");
    }
    return 0;
}

I: 双向排序

大学B组 试题 I .

J: 分果果

参考:

动态规划.

小朋友是无序的,不过为了探讨方便,不妨人为规定一个顺序:第 i − 1 i-1 i1 个小朋友被分到的最后一包糖果的编号小于等于 i i i 个小朋友被分到的最后一包糖果的编号. 容易证明,这样的规定对本题答案没有影响.

l b lb lb m m m 个小朋友被分到糖果重量的下界,于是 1 ≤ l b ≤ ⌊ 2 s n m ⌋ 1\le lb\le \lfloor\frac{2s_n}{m}\rfloor 1lbm2sn . 其中 s i = ∑ t = 1 i w t s_i=\sum\limits_{t=1}^{i}w_t si=t=1iwt .

对于每一个 l b lb lb ,记 f i , j , k f_{i,j,k} fi,j,k 代表将前 j j j 包糖果分给前 i i i 个小朋友,且第 i − 1 i-1 i1 个小朋友被分到的最后一包糖果编号不超过 k k k 的条件下,前 i i i 个小朋友被分到糖果重量的最大值( l b lb lb 只是一个下界,不一定是最小值). 其中 j ≥ ⌈ i 2 ⌉ , ⌈ i − 1 2 ⌉ ≤ k ≤ j j\ge\lceil\frac i2\rceil,\lceil\frac {i-1}2\rceil\le k\le j j2i,2i1kj .

初始化 f i , j , k = ∞ , f 0 , 0 , 0 = l b f_{i,j,k}=\infty,f_{0,0,0}=lb fi,j,k=,f0,0,0=lb ,则

f i , j , k = { max ⁡ ( f i − 1 , 0 , 0 , s j ) , i ≥ 1 , j ≥ ⌈ i 2 ⌉ , k = 0 min ⁡ ( f i , j , k − 1 , min ⁡ t ≤ k s j − s t ≥ l b max ⁡ ( f i − 1 , k , t , s j − s t ) ) , i ≥ 1 , j ≥ ⌈ i 2 ⌉ , 1 ≤ k ≤ j . f_{i,j,k}= \begin{cases} \max(f_{i-1,0,0},s_j),&i\ge 1,j\ge\lceil\frac i2\rceil,k=0\\ \min(f_{i,j,k-1},\min\limits_{\substack{t \le k \\ s_j-s_t\ge lb}}\max(f_{i-1,k,t},s_j-s_t)),&i\ge 1,j\ge\lceil\frac i2\rceil,1\le k\le j. \end{cases} fi,j,k= max(fi1,0,0,sj),min(fi,j,k1,tksjstlbminmax(fi1,k,t,sjst)),i1,j2i,k=0i1,j2i,1kj.

由于随着 t t t 值的增大, f i − 1 , k , t f_{i-1,k,t} fi1,k,t s j − s t s_j-s_t sjst 都不会增大,所以 min ⁡ t ≤ k s j − s t ≥ l b max ⁡ ( f i − 1 , k , t , s j − s t ) = max ⁡ ( f i − 1 , k , p , s j − s p ) \min\limits_{\substack{t \le k \\ s_j-s_t\ge lb}}\max(f_{i-1,k,t},s_j-s_t)=\max(f_{i-1,k,p},s_j-s_p) tksjstlbminmax(fi1,k,t,sjst)=max(fi1,k,p,sjsp) ,其中 p p p 是满足条件的最大的 t t t .

又由于 i , j i,j i,j 不变时,随着 k k k 值的增大, p p p 值不会减小,因此求 p p p 的均摊时间复杂度为 O ( 1 ) O(1) O(1) .

于是求 f f f 的时间复杂度为 O ( n 2 m ) O(n^2m) O(n2m) .

min ⁡ l b ( f m , n , n − l b ) \min\limits_{lb}(f_{m,n,n}-lb) lbmin(fm,n,nlb) 即为结果.

总的时间复杂度为 O ( 2 s n m ⋅ n 2 m ) = O ( s n ⋅ n 2 ) O(\frac{2s_n}{m}\cdot n^2 m)=O(s_n\cdot n^2) O(m2snn2m)=O(snn2) .

编程计算 f f f 时不用特别注意 j , k j,k j,k 的范围,因为不合法状态已被记为 ∞ \infty ,从不合法的状态转移一定不会使结果更优.

如果使用 vector ,在 AcWing 上提交容易超时.

#include <iostream>
#include <functional>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 101, M = 51;
int w[N], s[N];
int f[M][N][N]; // 在 mi 的限制下,f[i][j][k] 代表前 i 个人分配前 j 包糖果,且第 i - 1 个人的最后一包糖果不超过 k 的方案的最大值的最小值
bool vis[N * N];
int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; ++i) {
        scanf("%d", &w[i]);
        s[i] = s[i - 1] + w[i];
        for (int j = 0; j < i; ++j) {
            vis[s[i] - s[j]] = true;
        }
    }
    int ans = s[n];
    for (int lb = 1; lb <= s[n] * 2 / m; ++lb) {
        if (!vis[lb]) continue;
        memset(f, 0x3f, sizeof f);
        f[0][0][0] = lb;
        for (int i = 1; i <= m; ++i) {
            for (int j = (i + 1 >> 1); j <= n; ++j) {
                if (s[j] < lb) continue;
                f[i][j][0] = max(f[i - 1][0][0], s[j]);
                int p = 0;
                for (int k = max(1, i >> 1); k <= j; ++k) {
                    while (p <= k && s[j] - s[p] >= lb) ++p;
                    --p;
                    f[i][j][k] = min(f[i][j][k - 1], max(f[i - 1][k][p], s[j] - s[p]));
                }
            }
        }
        ans = min(ans, f[m][n][n] - lb);
    }
    printf("%d", ans);
}

值得一提的是,当 n × 2 < m n\times 2 \lt m n×2<m 时,此题无解.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值