重积分换元法

本文旨在加深对重积分换元法的理解.

〇、前置知识

行列式的几何意义

设方阵 A = ( α 1 , α 2 , ⋯   , α n ) = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ) A=(\pmb \alpha_1,\pmb \alpha_2,\cdots,\pmb \alpha_n)=\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{pmatrix} A=(ααα1,ααα2,,αααn)=a11a21an1a12a22an2a1na2nann​ ,

∣ A ∣ |A| A​ 的几何意义为向量 α 1 , α 2 , ⋯   , α n \pmb \alpha_1,\pmb \alpha_2,\cdots,\pmb \alpha_n ααα1,ααα2,,αααn​ 所确定的几何体的体积, ∣ A ∣ |A| A​ 的正负与向量的排列顺序有关.

一、定积分的换元法

做变换 x = x ( t ) , ⇒ d x = x ′ ( t ) d t x=x(t),\Rightarrow \mathrm{d}x=x'(t)\mathrm{d}t x=x(t),dx=x(t)dt​​​ .

于是
∫ a b f ( x ) d x   =   ∫ α β f [ x ( t ) ] x ′ ( t ) d t . \int_a^b f(x)\mathrm{d}x\ =\ \int_{\alpha}^{\beta}f[x(t)]x'(t)\mathrm{d}t. abf(x)dx = αβf[x(t)]x(t)dt.

可见,无论 x = x ( t ) x=x(t) x=x(t)​ 是哪种变换, d x dx dx​​ 到 d t dt dt​​​ 的变换总是线性的. 类似地,重积分换元法中微分的变换同样是线性的.

二、二重积分的换元法

做变换 { x = x ( u , v ) , y = y ( u , v ) , \begin{cases}x=x\left( u,v\right), \\ y=y\left( u,v\right) ,\end{cases} {x=x(u,v),y=y(u,v),​​​ 则 { d x = ∂ x ∂ u d u + ∂ x ∂ v d υ , d y = ∂ y ∂ u d u + ∂ y ∂ v d v . \begin{cases}dx=\dfrac{\partial x}{\partial u}du+\dfrac{\partial x}{\partial v}d\upsilon, \\ dy=\dfrac{\partial y}{\partial u}du+\dfrac{\partial y}{\partial v}dv. \end{cases} dx=uxdu+vxdυ,dy=uydu+vydv.​​ ​​​​

d x , d y , d u , d v dx,dy,du,dv dx,dy,du,dv 是有方向的,本质上说应该是矢量,于是方程组可化为 ( d x d y ) = ( d u d v ) ( ∂ x ∂ u ∂ y ∂ u ∂ x ∂ v ∂ y ∂ v ) \begin{pmatrix} d\pmb x & d\pmb y \end{pmatrix}=\begin{pmatrix} d\pmb u & d\pmb v \end{pmatrix}\begin{pmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v } \end{pmatrix} (dxxxdyyy)=(duuudvvv)uxvxuyvy​​​​ .

不难发现

  • ( d x d y ) \begin{pmatrix} d\pmb x & d\pmb y \end{pmatrix} (dxxxdyyy)​​​ 下的向量 e i = ( 1 0 ) \pmb e_i =\begin{pmatrix} 1 \\ 0 \end{pmatrix} eeei=(10)​​​ 对应基 ( d u d v ) \begin{pmatrix} d\pmb u & d\pmb v \end{pmatrix} (duuudvvv)​​​ 下的 α = ( ∂ x ∂ u ∂ x ∂ v ) \pmb\alpha=\begin{pmatrix} \dfrac{\partial x}{\partial u} \\ \dfrac{\partial x}{\partial v} \end{pmatrix} ααα=uxvx​​​​ .​
  • ( d x d y ) \begin{pmatrix} d\pmb x & d\pmb y \end{pmatrix} (dxxxdyyy)​​​​​​​ 下的向量 e j = ( 0 1 ) \pmb e_j=\begin{pmatrix} 0 \\ 1 \end{pmatrix} eeej=(01)​​​​​​​ 对应基 ( d u d v ) \begin{pmatrix} d\pmb u & d\pmb v \end{pmatrix} (duuudvvv)​​​​​​​ 下的 β = ( ∂ y ∂ u ∂ y ∂ v ) \pmb \beta= \begin{pmatrix} \dfrac{\partial y}{\partial u} \\ \dfrac{\partial y}{\partial v } \end{pmatrix} βββ=uyvy​​​​​​​​ .

可见基 ( d x d y ) \begin{pmatrix} d\pmb x & d\pmb y \end{pmatrix} (dxxxdyyy) 下的单位面积对应基 ( d u d v ) \begin{pmatrix} d\pmb u & d\pmb v \end{pmatrix} (duuudvvv)​ 下 α , β \pmb \alpha,\pmb \beta ααα,βββ 围成的面积.

J = ∣ α , β ∣ = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ J=|\pmb \alpha,\pmb \beta|=\begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v } \end{vmatrix} J=ααα,βββ=uxuyvxvy d x d y = ∣ J ∣ d u d v dxdy=|J|dudv dxdy=Jdudv​​​ .

于是二重积分的换元法为
∬ D f ( x , y ) d x d y = ∬ D ′ f ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ d u d v . \underset{D}{\iint}f(x,y)dxdy=\underset{D'}{\iint}f(x(u,v),y(u,v))\left|J\right|dudv. Df(x,y)dxdy=Df(x(u,v),y(u,v))Jdudv.

为什么是 ∣ J ∣ |J| J​ 而不是 J J J​​ 呢?因为二重积分中的面积没有方向的概念,这不像定积分中的上下限本身就规定了方向.

  • 对于极坐标变换 { x = ρ cos ⁡ θ , y = ρ sin ⁡ θ \begin{cases}x=\rho\cos \theta,\\y=\rho\sin\theta\end{cases} {x=ρcosθ,y=ρsinθ​ , J = ∂ ( x , y ) ∂ ( ρ , θ ) = ∣ cos ⁡ θ − ρ sin ⁡ θ sin ⁡ θ ρ cos ⁡ θ ∣ = ρ J=\dfrac{\partial(x,y)}{\partial(\rho,\theta)}=\left|\begin{array}{cc}\cos \theta & -\rho\sin \theta\\ \sin \theta & \rho\cos\theta\\ \end{array}\right|=\rho J=(ρ,θ)(x,y)=cosθsinθρsinθρcosθ=ρ​ ,
    因此 d x d y = ρ d ρ d θ dxdy=\rho d\rho d\theta dxdy=ρdρdθ .

三、三重积分的换元法

做变换 { x = x ( u , v , w ) , y = y ( u , v , w ) , z = z ( u , v , w ) , \begin{cases}x=x(u,v,w),\\y=y(u,v,w),\\ z=z(u,v,w),\end{cases} x=x(u,v,w),y=y(u,v,w),z=z(u,v,w),​​​​​​ 则 { d x = ∂ x ∂ u d u + ∂ x ∂ v d v + ∂ x ∂ w d w , d y = ∂ y ∂ u d u + ∂ y ∂ v d v + ∂ y ∂ w d w , d z = ∂ z ∂ u d u + ∂ z ∂ v d v + ∂ z ∂ w d w . \begin{cases}dx=\dfrac{\partial x}{\partial u}du+\dfrac{\partial x }{\partial v}dv+\dfrac{\partial x}{\partial w}dw,\\ dy=\dfrac{\partial y}{\partial u}du+\dfrac{\partial y}{\partial v}dv+\dfrac{\partial y}{\partial w}dw,\\ dz=\dfrac{\partial z}{\partial u}du+\dfrac{\partial z}{\partial v}dv+\dfrac{\partial z}{\partial w}dw.\end{cases} dx=uxdu+vxdv+wxdw,dy=uydu+vydv+wydw,dz=uzdu+vzdv+wzdw.​​​​​​

类似二重积分换元,方程组可化为 ( d x d y d z ) = ( d u d v d w ) ( ∂ x ∂ u ∂ y ∂ u ∂ z ∂ u ∂ x ∂ v ∂ y ∂ v ∂ z ∂ v ∂ x ∂ w ∂ y ∂ w ∂ z ∂ w ) \begin{pmatrix} d\pmb x & d\pmb y & d\pmb z \end{pmatrix}=\begin{pmatrix} d\pmb u & d\pmb v & d\pmb w \end{pmatrix}\begin{pmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} & \dfrac{\partial z}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v } & \dfrac{\partial z}{\partial v} \\ \dfrac{\partial x}{\partial w} & \dfrac{\partial y}{\partial w } & \dfrac{\partial z}{\partial w} \end{pmatrix} (dxxxdyyydzzz)=(duuudvvvdwww)uxvxwxuyvywyuzvzwz .

不难发现

  • ( d x d y d z ) \begin{pmatrix} d\pmb x & d\pmb y &d\pmb z \end{pmatrix} (dxxxdyyydzzz)​ 下的向量 e i = ( 1 0 0 ) \pmb e_i =\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} eeei=100​ 对应基 ( d u d v d w ) \begin{pmatrix} d\pmb u & d\pmb v & d\pmb w \end{pmatrix} (duuudvvvdwww)​ 下的 α = ( ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ) \pmb\alpha=\begin{pmatrix} \dfrac{\partial x}{\partial u} \\ \dfrac{\partial x}{\partial v} \\ \dfrac{\partial x}{\partial w} \end{pmatrix} ααα=uxvxwx​ .
  • ( d x d y d z ) \begin{pmatrix} d\pmb x & d\pmb y &d\pmb z \end{pmatrix} (dxxxdyyydzzz)​​ 下的向量 e j = ( 0 1 0 ) \pmb e_j=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} eeej=010​​ 对应基 ( d u d v d w ) \begin{pmatrix} d\pmb u & d\pmb v & d\pmb w \end{pmatrix} (duuudvvvdwww)​​ 下的 β = ( ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ) \pmb\beta=\begin{pmatrix} \dfrac{\partial y}{\partial u} \\ \dfrac{\partial y}{\partial v} \\ \dfrac{\partial y}{\partial w} \end{pmatrix} βββ=uyvywy​​​ .
  • ( d x d y d z ) \begin{pmatrix} d\pmb x & d\pmb y &d\pmb z \end{pmatrix} (dxxxdyyydzzz)​​​​ 下的向量 e k = ( 0 0 1 ) \pmb e_k=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} eeek=001​​​​ 对应基 ( d u d v d w ) \begin{pmatrix} d\pmb u & d\pmb v & d\pmb w \end{pmatrix} (duuudvvvdwww)​​​​ 下的 γ = ( ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ) \pmb\gamma=\begin{pmatrix} \dfrac{\partial z}{\partial u} \\ \dfrac{\partial z}{\partial v} \\ \dfrac{\partial z}{\partial w} \end{pmatrix} γγγ=uzvzwz​​​​ .

可见基 ( d x d y d z ) \begin{pmatrix} d\pmb x & d\pmb y &d\pmb z \end{pmatrix} (dxxxdyyydzzz)​​ 下的单位体积对应基 ( d u d v d w ) \begin{pmatrix} d\pmb u & d\pmb v & d\pmb w \end{pmatrix} (duuudvvvdwww)​​ 下 α , β , γ \pmb \alpha,\pmb \beta,\pmb \gamma ααα,βββ,γγγ​​​ 围成的体积.

J = ∣ α , β , γ ∣ = ∣ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ∣ J=|\pmb \alpha,\pmb \beta,\pmb \gamma|=\begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} & \dfrac{\partial x}{\partial w}\\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} & \dfrac{\partial y}{\partial w}\\ \dfrac{\partial z}{\partial u} & \dfrac{\partial z}{\partial v} & \dfrac{\partial z}{\partial w} \end{vmatrix} J=ααα,βββ,γγγ=uxuyuzvxvyvzwxwywz​ , d x d y d z = ∣ J ∣ d u d v d w dxdydz=|J|dudvdw dxdydz=Jdudvdw​ .

于是三重积分的换元法为
∭ Ω f ( x , y , z ) d x d y = ∭ Ω ′ f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) ∣ J ∣ d u d v d w . \underset{\Omega}{\iiint}f(x,y,z)dxdy=\underset{\Omega'}{\iiint}f(x(u,v,w),y(u,v,w),z(u,v,w))|J|dudvdw. Ωf(x,y,z)dxdy=Ωf(x(u,v,w),y(u,v,w),z(u,v,w))Jdudvdw.

类似二重积分,重积分中的体积同样没有方向性,因此需乘 ∣ J ∣ |J| J 而非 J J J .

  • 对于柱坐标变换 { x = ρ cos ⁡ θ , y = ρ sin ⁡ θ , z = z , \begin{cases}x=\rho\cos \theta,\\y=\rho\sin\theta,\\ z=z,\end{cases} x=ρcosθ,y=ρsinθ,z=z,​​​​​​ J = ∂ ( x , y , z ) ∂ ( ρ , θ , z ) = ∣ cos ⁡ θ − ρ sin ⁡ θ 0 sin ⁡ θ ρ cos ⁡ θ 0 0 0 1 ∣ = ρ J=\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,z)}=\left|\begin{array}{ccc}\cos \theta & -\rho\sin \theta&0\\ \sin \theta & \rho\cos\theta&0\\ 0&0&1\end{array}\right|=\rho J=(ρ,θ,z)(x,y,z)=cosθsinθ0ρsinθρcosθ0001=ρ​​​​​​​ .
    于是 d x d y d z = ρ d ρ d θ d z dxdydz=\rho d\rho d\theta dz dxdydz=ρdρdθdz​​​​​​​ .

  • 对于球坐标变换变换 { x = r sin ⁡ φ cos ⁡ θ , y = r sin ⁡ φ sin ⁡ θ , z = r cos ⁡ φ , \begin{cases}x=r\sin\varphi\cos \theta,\\y=r\sin\varphi\sin\theta,\\ z=r\cos\varphi,\end{cases} x=rsinφcosθ,y=rsinφsinθ,z=rcosφ,​​​ J = ∂ ( x , y , z ) ∂ ( r , θ , φ ) = ∣ sin ⁡ φ cos ⁡ θ r cos ⁡ φ cos ⁡ θ − r sin ⁡ φ sin ⁡ θ sin ⁡ φ sin ⁡ θ r cos ⁡ φ sin ⁡ θ r sin ⁡ φ cos ⁡ θ cos ⁡ φ − r sin ⁡ φ 0 ∣ = r 2 sin ⁡ φ J=\dfrac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}=\left|\begin{array}{ccc}\sin\varphi\cos \theta & r\cos\varphi\cos \theta& -r\sin\varphi\sin \theta\\ \sin\varphi\sin\theta & r\cos\varphi\sin\theta&r\sin\varphi\cos\theta\\ \cos\varphi&-r\sin\varphi&0\end{array}\right|=r^2\sin \varphi J=(r,θ,φ)(x,y,z)=sinφcosθsinφsinθcosφrcosφcosθrcosφsinθrsinφrsinφsinθrsinφcosθ0=r2sinφ​​​​ .
    于是 d x d y d z = r 2 sin ⁡ φ d r d φ d θ dxdydz=r^2\sin \varphi drd\varphi d\theta dxdydz=r2sinφdrdφdθ​​​​​ .

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值