1.题目
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 已按 非递减顺序 排序
2.题解
2.1 暴力解法
每个数平方之后,排序。这个时间复杂度是 O(n + nlogn)。
2.2 双指针法
数组其实是有序的, 只不过负数平方之后可能成为最大数了。那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。此时可以考虑双指针法了,i指向起始位置,j指向终止位置。定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。
如果A[i] * A[i] < A[j] * A[j] 那么result[k–] = A[j] * A[j]; 。
如果A[i] * A[i] >= A[j] * A[j] 那么result[k–] = A[i] * A[i]; 。
时间复杂度:O(n),空间复杂度:O(1)
3. 代码
3.1 暴力解法
function sortedSquares(nums: number[]): number[] {
// 暴力解法
nums.forEach((item, index) => {
nums[index] = item * item;
});
return nums.sort((a, b) => a - b);
};
function sortedSquares(nums: number[]): number[] {
// 暴力解法-链式调用
return nums.map(i => i * i).sort((a, b) => a - b);
};
3.2 双指针
unshift时间性能不太好,改成 push 最后reverse()会提升性能。因为unshift在数组头部加元素,后面的元素要逐个往后移,性能消耗较大。
function sortedSquares(nums: number[]): number[] {
// 双指针
const arr: Array<number> = [];
let left: number = 0, right: number = nums.length - 1;
while(left <= right) {
// 右侧的元素不需要取绝对值,nums 为非递减排序的整数数组
// 在同为负数的情况下,左侧的平方值一定大于右侧的平方值
if (Math.abs(nums[left]) > nums[right]) {
// 使用 Array.prototype.unshift() 直接在数组的首项插入当前最大值
arr.unshift(Math.pow(nums[left], 2));
left++;
} else {
arr.unshift(Math.pow(nums[right], 2));
right--;
}
}
return arr;
};
function sortedSquares(nums: number[]): number[] {
// 双指针--性能提升
const arr: Array<number> = [];
let left: number = 0, right: number = nums.length - 1;
while(left <= right) {
if (Math.abs(nums[left]) > nums[right]) {
arr.push(Math.pow(nums[left], 2));
left++;
} else {
arr.push(Math.pow(nums[right], 2));
right--;
}
}
return arr.reverse();
};