Pandas初体验(一)

这篇博客介绍了Pandas中的Series数据结构,它是一维的数组对象,结合了数组数据和索引。内容包括如何创建Series,如通过数组或字典,并强调了索引在数据操作中的重要性。
摘要由CSDN通过智能技术生成

时间煮雨
@R星校长

1关:了解数据处理对象–Series

Pandas是为了解决数据分析任务而创建的,纳入了大量的库和标准数据模型,提供了高效地操作大型数据集所需的工具。
对于Pandas包,在Python中常见的导入方法如下:

from pandas import Series,DataFrame
import pandas as pd

Pandas中的数据结构

  • Series:一维数组,类似于Python中的基本数据结构list,区别是Series只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。就像数据库中的列数据;

DataFrame: 二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器;
Panel:三维的数组,可以理解为DataFrame的容器。

了解Series

为了开始使用Pandas,我们必需熟悉它的两个重要的数据结构:SeriesDataFrame。虽然它们不是每一个问题的通用解决方案,但可以提供一个坚实的,易于使用的大多数应用程序的基础。
Series是一个一维的类似的数组对象,包含一个数组的数据(任何NumPy的数据类型)和一个与数组关联的数据标签,被叫做索引 。最简单的Series是由一个数组的数据构成:

In [1]:obj=Series([4,7,-5,3])
In [2]:obj
Out[2]:
0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值