最长上升子序列

动态规划解决最长上升子序列

在这里插入图片描述
问题描述:
  给定一个任意顺序的数字序列,找出其中的最长上升子序列。给定一个数字序列 A i A_i Ai,它可以得到多个上升的子序列,不要求连续,但要求先后顺序,保证子序列后一个元素一定比前一个元素大。这些上升的子序列中的最长的一个,就是它的最长上升子序列。
  如:给定数字序列为A={1,7,3,5,9,4,8},它的上升子序列有{1,7},{1,3},{1,3,5},{1,3,5,9}等等,最长上升子序列为{1,3,5,9},它的最长上升子序列的长度就是4。


解题思路:
  1. 找子问题:
      求以 A k ( k = 0 , 1 , 2 , 3 … … n − 1 ) A_k(k=0,1,2,3……n-1) Ak(k=0,1,2,3n1)为终点的最长上升子序列的长度。“终点”是指一个上升子序列中最右边的那个数。

【分析】:
  这个子问题乍一看好像和原问题并不完全一样,原问题是要求整个序列的最长上升子序列,并没有指定它的终点,这个子问题却指定了它的终点。但是呢,如果以每个元素为终点的最长上升子序列都解决了,那么,整个数列的最长上升子序列不就是这n个最长上升子序列中的最大值吗。

  1. 确定状态:
      每个子问题只和一个变量的位置相关,那么,整个位置 k k k 就是这个题的状态。每个状态对应的“值”就是以 A k A_k Ak 为终点的最长上升子序列的长度。

  2. 递归方程:
      我们使用动态规划解决问题的基本思路是先确定递归方程,然后分析递归方程,再做出一些改进。这个题中我们设一个数组 MaxLen[N] 来存放以 A k A_k Ak 为终点的最长上升子序列的长度。
    M a x L e n [ k ] = { 1 , 初始值 m a x { M a x L e n [ k ] , M a x L e n [ j ] + 1 } , 0<=j<k MaxLen[k]=\begin{cases}1, & \text{初始值} \\max\{MaxLen[k],MaxLen[j]+1\}, & \text{0<=j<k}\end{cases} MaxLen[k]={1,max{MaxLen[k],MaxLen[j]+1},初始值0<=j<k  即:
      (1)初始时,每个元素的最长上升子序就是它本身,长度就为1。
      (2)其次,元素 A k A_k Ak 的最长上升子序的长度就是,在 A k A_k Ak 左边,“终点”的数值小于 A k A_k Ak 且长度最大的那个上升子序列的长度加一。因为 A k A_k Ak 左边任何终点小于 A k A_k Ak 的子序列加上 A k A_k Ak后就能形成一个更长的上升子序列。
      (3)如果找不到这样的一个满足条件的“终点”,那就不改变当前元素的最长子序列长度,它还是1,因为我们初始化时,每个值的最长上升子序列都初始化为1。

  3. 时间复杂度: 时间复杂度 = 状态 * 每个状态的计算量。
      这个问题有 n 个状态,每个状态需要一个循环来计算,所以每个状态的时间复杂度是 O ( n ) O(n) O(n),所以,这个题是时间复杂度就是 O ( n 2 ) O(n^2) O(n2)


写出递推代码:

#include<iostream>
using namespace std;
const int N = 100;
int max(int a, int b)
{
	int m = a > b ? a : b;
	return m;
}
int main()
{
	int n,i,j;
	cin >> n;
	int A[N];//存放原始数据
	int MaxLen[N];//存放Ak为终点的最长子序长度
	for (i = 0; i < n; i++)
	{
		cin >> A[i];
		MaxLen[i] = 1;//初始化为1

	}
	for (i = 1; i < n; i++)//求以Ai为终点的最长上升子序列的长度
	{
		for (j = 0; j < i; j++)//查看Ak左边的的元素的最长上升子序列。
		{
			if (A[i]>A[j])
			{
				MaxLen[i] = max(MaxLen[i], MaxLen[j] + 1);//每次更新
			}
		}
		
	}
	int max = MaxLen[0];
	for (i = 0; i < n; i++)
	{
		if (MaxLen[i] > max)
			max = MaxLen[i];
	}
	cout << max << endl;
	return 0;
}

可能有人会问,MaxLen[i] = max(MaxLen[i], MaxLen[j] + 1);这一句为什么不直接把MaxLen[j] + 1)赋值给MaxLen[i]呢?为什么还要进行一次比较?
  因为MaxLen[i]的值在前面可能经过更新,它比MaxLen[j] + 1)还要大,所以,需要一次比较。
将上面那个数列 A={1,7,3,5,9,4,8} 做一点改变,将 4 改为 2 ,B={1,7,3,5,9,2,8}。

初始:
在这里插入图片描述

经过几次循环,计算出前6个元素以每个元素为终点的最长子序列如下表:
在这里插入图片描述

现要计算以最后一个元素为“终点”在最长上升子序列,由前面五个元素(1,7,3,5,9)进行递推,得出8的“暂时”上升子序列长度为4,再和元素2进行比较,满足if (A[i]>A[j])的关系,如果这时直接将MaxLen[j] + 1赋值给MaxLen[i],那么,元素8的最长上升子序列就变成了3,而不是正确的4。所以,就会发生错误。

所以,需要进行MaxLen[i] = max(MaxLen[i], MaxLen[j] + 1);,取较大值。


其他的动态规划问题:

浅谈动态规划
动态规划解决数字三角形问题
动态规划解决最长公共子序列

学海无涯

在这里插入图片描述

  • 12
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值