满二叉树、完全二叉树、平衡二叉树、最优二叉树

一、满二叉树

  一棵二叉树的结点要么是叶子结点,要么它有两个子结点(如果一个二叉树的层数为K,且结点总数是(2^k) -1,则它就是满二叉树。)

二、完全二叉树

  若设二叉树的深度为k,除第 k 层外,其它各层 (1~k-1) 的结点数都达到最大个数,第k 层所有的结点都连续集中在最左边,这就是完全二叉树。

三、平衡二叉树

  它或者是一颗空树,或它的左子树和右子树的深度之差(平衡因子)的绝对值不超过1,且它的左子树和右子树都是一颗平衡二叉树。

 四、最优二叉树(哈夫曼树)

  树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

结合哈夫曼编码去理解

哈夫曼编码的理解(Huffman Coding)

哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,可变字长编码(VLC)的一种。Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码(有时也称为霍夫曼编码)。

哈夫曼编码,主要目的是根据使用频率来最大化节省字符(编码)的存储空间。

简易的理解就是,假如我有A,B,C,D,E五个字符,出现的频率(即权值)分别为5,4,3,2,1,那么我们第一步先取两个最小权值作为左右子树构造一个新树,即取1,2构成新树,其结点为1+2=3,如图:

虚线为新生成的结点,第二步再把新生成的权值为3的结点放到剩下的集合中,所以集合变成{5,4,3,3},再根据第二步,取最小的两个权值构成新树,如图:

 

 再依次建立哈夫曼树,如下图:

其中各个权值替换对应的字符即为下图:

 

所以各字符对应的编码为:A->11,B->10,C->00,D->011,E->010
霍夫曼编码是一种无前缀编码。解码时不会混淆。其主要应用在数据压缩,加密解密等场合。

如果考虑到进一步节省存储空间,就应该将出现概率大(占比多)的字符用尽量少的0-1进行编码,也就是更靠近根(节点少),这也就是最优二叉树-哈夫曼树。
为什么?-----> 权值大的在上层,权值小的在下层。满足出现频率高的码长短。

哈夫曼编码的带权路径权值:叶子节点的值 * 叶子节点的高度(根节点为0)

上图的带权路径长度为:(3+4+5)*2+(1+2)*3=33

 集录于:

满二叉树、完全二叉树、平衡二叉树、最优二叉树 - 知道了呀~ - 博客园

哈夫曼编码的理解(Huffman Coding)_Never-Giveup的博客-CSDN博客_霍夫曼编码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值