笔记本和台式机共用鼠标,键盘的方法----通过微软的软件Microsoft Garage Mouse without Borders

Microsoft Garage Mouse without Borders

如何下载?

软件 下载链接.
下好之后,点击下载文件打开
在这里插入图片描述
进入安装步骤1,点击next
在这里插入图片描述
步骤2,勾上赞同,installing安装…
在这里插入图片描述
步骤3,安装完成
在这里插入图片描述

如何使用?

在笔记本和台式机上安装好软件之后
在这里插入图片描述
点击yes显示如下,代表用本机(local machine)的鼠标,键盘作为共用的设备
在这里插入图片描述
点击no显示如下,表示被连接
在这里插入图片描述
在点击yes的界面中输入另外一个设备的点击no页面的信息即可连接
在这里插入图片描述

连接中…
在这里插入图片描述
连接成功!
在这里插入图片描述
具体布局调整
最后进入控制界面,不点击左下角的two row是默认的左右布局,点击选中之后是上下布局(如图片所示)
在这里插入图片描述
注意:如果你是开发人员,在使用此软件在两台电脑间进行文件传输(文件只能以压缩包的形式传,直接在两台电脑之间拖动文件即可)时,注意要从传输的文件夹中(我的叫MouseWithoutBorders,如下)拿出来放在你的电脑的文件下。因为你所安装的全局工具找不到此软件传输文件的路径,只有放到本机电脑磁盘下才有用。
在这里插入图片描述

garage是一个强化学习框架,它是由加州大学伯克利分校的研究团队开发的。它旨在简化强化学习算法的实现和调试过程。garage提供了一组高级API和工具,使得开发者可以更轻松地构建、训练和评估强化学习模型。 garage框架的主要特点包括: - 提供了一系列经典的强化学习算法,如深度确定性策略梯度(DDPG)、深度Q网络(DQN)等。 - 支持多种环境,包括OpenAI Gym、MuJoCo等。 - 提供了用于策略优化和价值函数估计的高级API。 - 支持并行化训练和数据采样,以提高训练效率。 - 提供了可视化工具,用于监视训练过程和结果。 以下是使用garage框架实现强化学习算法的示例代码: ```python import gym from garage import wrap_experiment, run_experiment from garage.envs import GarageEnv from garage.experiment import LocalTFRunner from garage.tf.algos import PPO from garage.tf.baselines import GaussianMLPBaseline from garage.tf.policies import GaussianMLPPolicy @wrap_experiment def my_experiment(ctxt=None): env = GarageEnv(gym.make('CartPole-v1')) policy = GaussianMLPPolicy(env_spec=env.spec) baseline = GaussianMLPBaseline(env_spec=env.spec) algo = PPO(env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=100, discount=0.99, gae_lambda=0.97, lr_clip_range=0.2) runner = LocalTFRunner(snapshot_config=ctxt) runner.setup(algo, env) runner.train(n_epochs=100, batch_size=4000) run_experiment(my_experiment, snapshot_mode='last', seed=1) ``` 这是一个使用garage框架实现的PPO算法在CartPole环境上进行训练的示例。通过调用`run_experiment`函数来运行实验,该函数接受一个实验函数作为参数。在实验函数中,我们首先创建了一个CartPole环境,并定义了一个高斯多层感知机策略和基线。然后,我们使用PPO算法进行训练,并设置了一些超参数。最后,我们使用`runner.train`函数来运行训练过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值