排序算法-插入排序
方法
插入排序的方法就类似于:在斗地主发牌时,一张张牌地拿起并插入到自己手中的牌堆中。
假设数组 arr 有n个无序元素。
每一次的插入就是在区间 [0,i] 中找到 arr[i+1] 对应的位置并插入。 [0,i] 就相当于我们手中牌堆,arr[i+1] 就相当于下一张要插入的牌。直到没有下一个要插入的数,该数组就变得有序了。
第1次将 arr[1] 插入到 [0,0] 区间的正确位置
第2次将 arr[2] 插入到 [0,1] 区间的正确位置
…
第i次将 arr[i] 插入到 [0,i-1] 区间的正确位置
…
第n-1次将 arr[n-1] 插入到 [0,n-2] 区间的正确位置
实现
因为我在实现的时候使用的是数组,而在数组的插入操作中需要从插入位置开始,对区间内后面的所有元素进行一次后移,所以在内循环的时候,从 arr[i] 处开始向前遍历,每遇到一个大于 arr[i] 的数就交换,直到下一个数不大于 arr[i] 为止。如果数据结构是链表的话就直接遍历找到对应位置直接插入就行。
@Override
public void sort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
for (int j = i; j > 0; j--) {
if (arr[j] < arr[j-1]) {
// swap
int temp = arr[j];
arr[j] = arr[j-1];
arr[j-1] = temp;
}
}
}
}
复杂度分析
没进行一次交换,数组中元素倒置的数量就会减一,当倒置数量变为0的时候,数组有序。因此所需要交换的次数就是数组中元素倒置的数量,也就是说,数组中只有几个元素位置不正确的时候,该排序方法需要交换的次数就越少,效率也越高。
时间复杂度
- 最佳时间复杂度是在数组元素无倒置的时候,不需要交换,相当于就只是扫描了一遍数组,此时最佳时间复杂度是O(n)
- 最差时间复杂度是在整个数组倒置的时候,每次插入都要在区间的最前面,需要交换 1+2+3…+n = (n^2+n)/2 次,因此最差时间复杂度是 O(n^2)。
- 平均时间复杂度是每次插入都在区间中间,即 (1+2+3…+n)/2 = (n^2+n)/4 次,所以平均时间复杂度是 O(n^2)。
空间复杂度
在原数组的空间上进行交换,所以空间复杂度为 O(1)。