国赛A题根据Fourier热传导定律和牛顿冷却定律建立了热传导模型,模型的微分方程如下:
{ ∂ u ∂ t = k c ρ ∂ 2 u ∂ x 2 ∂ u ∂ x ∣ x = 0 = − h ( T 炉 − u ( 0 , t ) ) k , ∂ u ∂ x ∣ x = l = − h ( T 炉 − u ( l , t ) ) k , u ( x , 0 ) = T 0 . \begin{cases} \frac{\partial u}{\partial t}=\frac{k}{c\rho}\frac{\partial ^2u}{\partial x^2}\\ \frac{\partial u}{\partial x}\vert _{x=0}=-\frac{h(T_炉-u(0,t))}{k},\\ \frac{\partial u}{\partial x}\vert _{x=l}=-\frac{h(T_炉-u(l,t))}{k},\\ u(x,0)=T_0. \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧∂t∂u=cρk∂x2∂2u∂x∂u∣x=0=−kh(T炉−u(0,t)),∂x∂u∣x=l=−kh(T炉−u(l,t)),u(x,0)=T0.
其中, T 炉 ( x ) = T_炉(x)= T炉(x)=
{ T 1 − 5 , T 6 − T 1 − 5 5 ( x − 172.5 ) + T 1 − 5 , T 6 , T 7 − T 6 5 ( x − 208 ) + T 6 , T 7 , T 8 − 9 − T 7 5 ( x − 243.5 ) + T 7 , T 8 − 9 , T 10 − 11 − T 8 − 9 5 ( x − 314.5 ) + T 8 − 9 , T 10 − 11 \begin{cases} T_{1-5},\\ \frac{T_6-T_{1-5}}{5}(x-172.5)+T_{1-5},\\ T_6,\\ \frac{T_7-T_6}{5}(x-208)+T_{6},\\ T_7,\\ \frac{T_{8-9}-T_7}{5}(x-243.5)+T_{7},\\ T_{8-9},\\ \frac{T_{10-11}-T_{8-9}}{5}(x-314.5)+T_{8-9},\\ T_{10-11} \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧T1−5,5T6−T1−5(x−172.5)+T1−5,T6,5T7−T6(x−208)+T6,T7,5T8−9−T7(x−243.5)+T7,T8−9,5T10−11−T8−9(x−314.5)+T8−9,T10−11
下面来考虑这个偏微分方程的求解问题,设参数 k c ρ \frac{k}{c\rho} cρk为 k 1 k_1 k1,参数 h k \frac{h}{k} k