数据结构和算法(35)之克鲁斯卡尔算法

学习数据结构和算法的日常Demo

克鲁斯卡尔算法介绍

在这里插入图片描述

克鲁斯卡尔算法实例

在这里插入图片描述

问题图解

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
在这里插入图片描述
在这里插入图片描述

  • 第1步:
    将边<E,F>加入R中。 边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
  • 第2步:
    将边<C,D>加入R中。 上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
  • 第3步:
    将边<D,E>加入R中。
    上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
  • 第4步:
    将边<B,F>加入R中。 上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
  • 第5步:
    将边<E,G>加入R中。 上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
  • 第6步:
    将边<A,B>加入R中。 上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。
    此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

  • 问题一,采用排序算法进行排序即可。
  • 问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生成树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。
判断是否生成回路

在这里插入图片描述
关于终点的说明:

  1. 就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
  2. 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。
代码实现
public class KruskalDemo {

    private int edgeNum;    // 边的个数
    private char[] vertexs; // 顶点数目
    private int[][] matrix; // 邻接矩阵
    private static final int INF = Integer.MAX_VALUE;   // 使用INF表示两个顶点不能连通

    public KruskalDemo(char[] vertexs, int[][] matrix) {
        this.vertexs = vertexs;
        this.matrix = matrix;
        // 统计边的条数
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = 0; j < vertexs.length; j++) {
                if (this.matrix[i][j] != INF) {
                    this.edgeNum++;
                }
            }
        }
    }

    public void print() {
        System.out.println("邻接矩阵为:");
        for (int[] ints : this.matrix) {
            for (int anInt : ints) {
                System.out.printf("%12d", anInt);
            }
            System.out.println();
        }
    }


    // 返回顶点的下标
    private int getPosition(char c) {
        return Arrays.binarySearch(this.vertexs, c);
    }

    // 获取图中所有的边,后面需要遍历该集合
    // 通过邻接矩阵来获取
    private ArrayList<EData> getEdges() {
        int index = 0;
        ArrayList<EData> datas = new ArrayList<>();
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = i + 1; j < vertexs.length; j++) {
                if (matrix[i][j] != INF) {
                    datas.add(new EData(vertexs[i], vertexs[j], matrix[i][j]));
                }
            }
        }
        return datas;
    }

    // 获取下标为i的顶点的终点
    // ends[]记录了各个顶点对应的终点是哪一个,ends数组是在遍历过程中逐步形成的
    private int getEnd(int[] ends, int i) {
        while (ends[i] != 0) {
            i = ends[i];
        }
        return i;
    }

    public void kruskal() {
        int index = 0;                          // 表示最后结果数组的索引
        int[] ends = new int[this.edgeNum];     // 保存已有的最小生成树,每个顶点在最小生成树中的终点
        // 创建结果集,保存最小生成树
        ArrayList<EData> rets = new ArrayList<>();
        // 获取所有边集合
        ArrayList<EData> edges = getEdges();
        // 对边集合进行排序
        Collections.sort(edges);
        // 遍历edges,将边添加到最小生成树中时,判断准备的边是否形成了回路,没有才加入
        for (int i = 0; i < edges.size(); i++) {
            // 获取第i条边的第一个顶点的下标
            int p1 = getPosition(edges.get(i).start);   // <E,F> E:4    <E,G>
            // 获取第i条边的第二个顶点的下标
            int p2 = getPosition(edges.get(i).end);     // F:5           G:6
            // 获取p1下标顶点在已有的最小生成树中对应的终点
            int m = getEnd(ends, p1);                   // Em:4          Em:5
            // 获取p2下标顶点在已有的最小生成树中对应的终点
            int n = getEnd(ends, p2);                   // Fn:5          Gn:6
            // 判断是否构成回路即m,n是否相等
            if (m != n) {
                // 不构成回路
                // 设置m在已有最小生成树中的终点
                // 不需要ends[n] = n;
                ends[m] = n;                // ends[E:4] = F:5
                rets.add(edges.get(i));     // 加入最小生成树集合
            }
        }
        // 输出最小生成树
        System.out.println("最小生成树:");
        System.out.println(rets);
    }

    public static void main(String args[]) {
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        //克鲁斯卡尔算法的邻接矩阵
        int matrix[][] = {
                    /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
                /*A*/ {0, 12, INF, INF, INF, 16, 14},
                /*B*/ {12, 0, 10, INF, INF, 7, INF},
                /*C*/ {INF, 10, 0, 3, 5, 6, INF},
                /*D*/ {INF, INF, 3, 0, 4, INF, INF},
                /*E*/ {INF, INF, 5, 4, 0, 2, 8},
                /*F*/ {16, 7, 6, INF, 2, 0, 9},
                /*G*/ {14, INF, INF, INF, 8, 9, 0}};

        KruskalDemo kruskalDemo = new KruskalDemo(vertexs, matrix);
        kruskalDemo.print();
        kruskalDemo.kruskal();
    }
}

// 边对象
class EData implements Comparable<EData> {
    char start;     // 边的起点
    char end;       // 边的终点
    int weight;     // 边的权值

    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
        return "<" + start +
                "," + end +
                "> 权值=" + weight;
    }

    @Override
    public int compareTo(EData o) {
        return this.weight - o.weight;
    }
}
算法关键
<C,E>为例
// 获取下标为i的顶点的终点
    // ends[]记录了各个顶点对应的终点是哪一个,ends数组是在遍历过程中逐步形成的
    private int getEnd(int[] ends, int i) {
        while (ends[i] != 0) {
            i = ends[i];
        }
        return i;
    }

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
C,E终点相同(F),形成回路,故不符合条件。
在这里插入图片描述

GitHub:数据结构和算法源代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值