简单线性回归
一个自变量和一个因变量,两者之间的关系可以用一条直线近似表示,这种回归被称为简单线性回归
线性方程:y=kx+b
计算咖啡店日均人流量(自变量)和日均收入(因变量)的关系。
问题:如何得到更合适的线性方程呢?
最小二乘法
=>又线性回归可估计:y=kx+b
问题:如何求解以算到线性方程?
- 公式->数学
- 工具->sklern、spark等
代码演示:
import pandas as pd
data = pd.read_excel("SimoleLR.xlsx")
# 散点图表示数据
import matplotlib.pyplot as plt
data.plot.scatter(x='日均人流量(千人)',y='日均销售收入(千元)')
plt.show()
# 简单线性回归
from sklearn.linear_model import LinearRegression
features = data['日均人流量(千人)'].values.reshape(-1, 1)
target = data['日均销售收入(千元)']
regression = LinearRegression()
model = regression.fit(features,target)
文章内容来自:https://www.bilibili.com/video/BV1sJ411z7zJ/?spm_id_from=333.999.0.0&vd_source=2d2f3720211460e735002f61191970e1