简单线性回归&最小二乘法(机器学习入门)

简单线性回归

一个自变量和一个因变量,两者之间的关系可以用一条直线近似表示,这种回归被称为简单线性回归
线性方程:y=kx+b
计算咖啡店日均人流量(自变量)和日均收入(因变量)的关系。
问题:如何得到更合适的线性方程呢?
最小二乘法
=>又线性回归可估计:y=kx+b
在这里插入图片描述
问题:如何求解以算到线性方程?

  1. 公式->数学
  2. 工具->sklern、spark等
    代码演示:
import pandas as pd
data = pd.read_excel("SimoleLR.xlsx")

在这里插入图片描述

# 散点图表示数据
import matplotlib.pyplot as plt
data.plot.scatter(x='日均人流量(千人)',y='日均销售收入(千元)')
plt.show()

在这里插入图片描述

# 简单线性回归
from sklearn.linear_model import LinearRegression
features = data['日均人流量(千人)'].values.reshape(-1, 1)
target = data['日均销售收入(千元)']
regression = LinearRegression()
model = regression.fit(features,target)

在这里插入图片描述

文章内容来自:https://www.bilibili.com/video/BV1sJ411z7zJ/?spm_id_from=333.999.0.0&vd_source=2d2f3720211460e735002f61191970e1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值