贝叶斯优化 -- 理解

调整超参数设置  ----->     假设超参数X与模型的损失函数有联系

那么我们假设一组超参数 X=[x_1,x_2,x_3,...,x_n], 模型评价(损失函数)定义为 f(x)

那么,我们最初的目标就是超参数调优,选择合适的超参数,使得模型跑出来的损失函数最小,即:x^* = {argmin}_{x\in X}f(x)         (1)

例如:

1. Input:

  • f: 就是那个所谓的黑盒子,即输入一组超参数,得到一个输出值。
  • X:是超参数搜索空间等。
  • D:表示一个由若干对数据组成的数据集,每一对数组表示为 (X,y),X是一组超参数,y表示该组超参数对应的结果。
  • S:是Acquisition Function(采集函数),这个函数的作用是用来选择公式(1)中的x,后面会详细介绍这个函数。
  • M:超参模型。是对数据集D进行拟合得到的模型,可以用来假设的模型有很多种,例如随机森林,Tree Parzen Estimators(想要了解这两种的可以阅读参考文献[1])等,但是本文主要介绍高斯模型

2. InitSamples(f,x)→D

        这一步骤就是初始化获取数据集D= (X1,y1),...,(Xn,yn) ,其中yi=f(Xi),这些都是已知的。

3. 循环选参数T次

        因为每次选出参数X后都需要计算f(X),而正如前面介绍的每计算一次函数f,都会消耗大量资源,所以一般需要固定选参次数(或者是函数评估次数)

  • p(y|x,D)←FITMODEL(M,D)

        预先假设M为高斯分布模型,通过D建立分布图,该分布图 通过采集函数,选择最大Xi,将这个X带入f(Xi)中得到yi,加入到D中。

   

最后可得到的核心还是贝叶斯:P(M|E)\propto P(E|M)P(M) ,M为超参数模型,E为上述的D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌新待开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值