调整超参数设置 -----> 假设超参数X与模型的损失函数有联系
那么我们假设一组超参数 , 模型评价(损失函数)定义为
那么,我们最初的目标就是超参数调优,选择合适的超参数,使得模型跑出来的损失函数最小,即: (1)
例如:
1. Input:
- f: 就是那个所谓的黑盒子,即输入一组超参数,得到一个输出值。
- X:是超参数搜索空间等。
- D:表示一个由若干对数据组成的数据集,每一对数组表示为 (X,y),X是一组超参数,y表示该组超参数对应的结果。
- S:是Acquisition Function(采集函数),这个函数的作用是用来选择公式(1)中的x,后面会详细介绍这个函数。
- M:超参模型。是对数据集D进行拟合得到的模型,可以用来假设的模型有很多种,例如随机森林,Tree Parzen Estimators(想要了解这两种的可以阅读参考文献[1])等,但是本文主要介绍高斯模型。
2. InitSamples(f,x)→D
这一步骤就是初始化获取数据集D= (X1,y1),...,(Xn,yn) ,其中yi=f(Xi),这些都是已知的。
3. 循环选参数T次
因为每次选出参数X后都需要计算f(X),而正如前面介绍的每计算一次函数f,都会消耗大量资源,所以一般需要固定选参次数(或者是函数评估次数)。
- p(y|x,D)←FITMODEL(M,D)
预先假设M为高斯分布模型,通过D建立分布图,该分布图 通过采集函数,选择最大Xi,将这个X带入f(Xi)中得到yi,加入到D中。
最后可得到的核心还是贝叶斯: ,M为超参数模型,E为上述的D