原题链接
思路(整数二分)
1.又是一道二分,和昨天的二分可以说一模一样,昨天的二分链接
2.二分就是要找到能二分的东西,然后依次枚举符合条件的值
3.因为题中让求的是切出正方形巧克力的边长,我们只要枚举边长,然后判断在这个边长的情况下小明的巧克力能否满足k位小朋友
4.我们依次枚举N块巧克力,把每块巧克力切出的值相加,看最后结果是否大于K即可,每块巧克力能切出的数量是(h/x)*(w/x)
AC代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int n, k;
int h[N], w[N];
bool check(int x){
int res=0;
for(int i=1;i<=n;i++){
int row=w[i]/x;
int col=h[i]/x;
res+=row*col;
}
if(res>=k){
return true;
}
return false;
}
int bsearch(){
int l=0,r=1e5;
while (l<r){
int mid=(l+r+1)>>1;
if(check(mid)){
l=mid;
}else{
r=mid-1;
}
}
return l;
}
int main() {
cin>>n>>k;
for(int i=1;i<=n;i++){
cin>>h[i]>>w[i];
}
cout<<bsearch()<<endl;
return 0;
}
二分模板(仅供参考)
1.整数二分
//区间[l,r]被划分为[l,mid]和[mid+1,r]时使用(可以理解为从左到右找)
int bsearch_1(int l,int r){
while (l < r) {
int mid = (l + r) >> 1;
if (check(mid)) { //check()判断mid是否满足性质
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
//区间[l,r]被划分为[l,mid-1]和[mid,r]时使用(可以理解为从右到左找)
int bsearch_2(int l,int r){
while (l < r) {
int mid = (l + r + 1) >> 1;
if (check(mid)) { //check()判断mid是否满足性质
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
2.浮点数二分
double bsearch_3(double l,double r){
const double eps = 1e-8;//取决于题目精度的要求(一般为后两位)
while (r - l > eps) {
double mid = (l + r) / 2;
if (check(mid)) {
r = mid;
} else {
l = mid;
}
}
return l;
}