问题描述
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入格式
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
样例输入
2 10
6 5
5 6
样例输出
2
优化的枚举——二分
public class 分巧克力 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int N = scanner.nextInt();// 多少块巧克力
int K = scanner.nextInt();// k位小朋友
int[] width = new int[100000];
int[] high = new int[100000];
for (int i = 0; i < N; i++) {
high[i] = scanner.nextInt();
width[i] = scanner.nextInt();// N块巧克力形状不同
}
// 二分枚举
int left = 1;
int ans = 0;
int right = 100000;// 为了考虑到所有情况,最好还是按照题目所给的最大范围
while (left <= right) {
int mid = left + (right - left) / 2;// 对高和宽进行二分
int cnt = 0;
for (int i = 0; i < N; i++) {
cnt += (high[i] / mid) * (width[i] / mid);// 这个是多次试验之后得到的结果
}
if (cnt >= K) {
left = mid + 1;
ans = mid;// 保留的是mid!!!然后让left继续去找是否有比mid更大的
} else {
right = mid - 1;
}
}
System.out.println(ans);
}
}
学习了二分枚举。