[PowerBI]用DAX完成简单线性回归

本文介绍如何在PowerBI中实现简单线性回归分析,包括两种方法的具体步骤及代码示例,帮助用户更好地理解趋势并预测未来数据走向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

12月追加:欢迎加入知乎【微软BI技术圈】,一起讨论、分享包括PowerBI在内的一切BI话题!

在这里插入图片描述
简单线性回归的方法:
只需要一个度量值就可以完成简单线性回归:

要让下面代码适用于你的模型,只需要把对应的字段/度量值
替换为你自己模型的字段/度量值:
Simple linear regression =
VAR Known =
    FILTER (
        SELECTCOLUMNS (
            ALLSELECTED ( Table[Column] ), 
            #这里替换成包含你需要的类别值的字段引用
            "Known[X]", [Measure X], 
            #这里替换成你的线性模型自变量
            "Known[Y]", [Measure Y], 
            #这里替换成你的线性模型因变量
        ),
        AND (
            NOT ( ISBLANK ( Known[X] ) ),
            NOT ( ISBLANK ( Known[Y] ) )
        )
    )
VAR Count_Items =
    COUNTROWS ( Known )
VAR Sum_X =
    SUMX ( Known, Known[X] )
VAR Sum_X2 =
    SUMX ( Known, Known[X] ^ 2 )
VAR Sum_Y =
    SUMX ( Known, Known[Y] )
VAR Sum_XY =
    SUMX ( Known, Known[X] * Known[Y] )
VAR Average_X =
    AVERAGEX ( Known, Known[X] )
VAR Average_Y =
    AVERAGEX ( Known, Known[Y] )
VAR Slope =
    DIVIDE (
        Count_Items * Sum_XY - Sum_X * Sum_Y,
        Count_Items * Sum_X2 - Sum_X ^ 2
    )
VAR Intercept =
    Average_Y - Slope * Average_X
RETURN
    Intercept + Slope * [Measure X]

另一种线性回归方法:
(注:实际上这一种方法和前法相同,只不过此方法是针对于时间序列的)

Simple linear regression =
VAR Known =
    FILTER (
        SELECTCOLUMNS (
            ALLSELECTED ( 'Date'[Date] ), 
            "Known[X]", 'Date'[Date],
            "Known[Y]", [Measure Y]
        ),
        AND (
            NOT ( ISBLANK ( Known[X] ) ),
            NOT ( ISBLANK ( Known[Y] ) )
        )
    )
VAR Count_Items =
    COUNTROWS ( Known )
VAR Sum_X =
    SUMX ( Known, Known[X] )
VAR Sum_X2 =
    SUMX ( Known, Known[X] ^ 2 )
VAR Sum_Y =
    SUMX ( Known, Known[Y] )
VAR Sum_XY =
    SUMX ( Known, Known[X] * Known[Y] )
VAR Average_X =
    AVERAGEX ( Known, Known[X] )
VAR Average_Y =
    AVERAGEX ( Known, Known[Y] )
VAR Slope =
    DIVIDE (
        Count_Items * Sum_XY - Sum_X * Sum_Y,
        Count_Items * Sum_X2 - Sum_X ^ 2
    )
VAR Intercept =
    Average_Y - Slope * Average_X
RETURN
    SUMX (
        DISTINCT ( 'Date'[Date] ),
        Intercept + Slope * 'Date'[Date]
    )

需要注意的是,要在总计级别上显示正确的金额,还需要修改RETURN表达式。在体现销售数据的情况下,使用SUMX是合适的;但如果您处理的是类似温度的数据,使用Averagex()也许更加合适。
然后你可以完成下面的图表:
在这里插入图片描述
红线看起来很像趋势线,不是吗?事实上,如果在图表中添加趋势线,它将与红线完全相同:
在这里插入图片描述
至于为何要计算趋势线,有以下两种考量:

1.使用内置趋势线,只能从Y轴推断其值,而计算出的趋势线允许您显式地查看值。
2.Power BI只允许为数字或日期时间轴添加趋势线(截至2017年9月)。一旦使用字符串(例如月份名称),就失去了添加趋势线的能力。通过简单的线性回归,你可以自己计算它们,只要你有连续的数值作为已知的x值

(注:本文原本做为原创文,但Daniil早在2017年即发表了该主题的博客,并且代码更加简洁易用,因此弃用了自己的代码。此外他还写了很多其他有趣的博客,有很多PowerBI实用的技巧,可以点击这里查看他的博文。)

在Excel Power Query中,如果你想按Dea分组并对每个组内的数据进行线性回归,首先你需要创建一个数据透视表或者使用Power Query的Grouping和M-functions。这里假设你的数据源是在H6:G15范围内,Dea字段在某个列。以下是步骤: 1. **打开Power Query编辑器**: - 右键点击工作表,选择"从表格"或"从数据源"开始数据探索。 - 将你的数据导入到查询编辑器中。 2. **分组并计算线性回归**: - 添加一个新的计算列,使用`Mapply`函数来进行分组: ```sql =Mapply( LINEST, {H6:H15}, {G6:G15} ^ {1, 2, 3}, List.Distinct(Col_Dea), List.Distinct(Col_Date), List.Distinct(Col_Weight), List.Distinct(Col_Sample) ) ``` - `Col_Dea`、`Col_Date`、`Col_Weight`和`Col_Sample`分别替换为你的Dea、日期、权重或其他可能影响线性的列名。 3. **提取斜率**: - 通过索引来选取第一行(即斜率): ```sql =INDEX(Table, each _, 1) ``` - 将此表达式添加到新的列中,并命名为"Regression_Slope"或者其他你喜欢的名字。 注意,由于Power Query不直接支持DAX(数据模型表达语言),你需要将以上步骤转换成DAX,但这通常是在Power BI的工作区里完成。一旦在Power Query中准备好数据,你可以导出到报表或数据模型部分,然后在那里使用DAX公式。 在Power BI Desktop中,你可以创建一个新的计算列,类似上述的Mapply和INDEX,但在DAX环境中表达: ```dax Regression_Slope = VAR regressionResults = CALCULATE( LINEST('Table'[H], 'Table'[G] ^ {1, 2, 3}, ALL('Table'[Dea]), ALL('Table'[Date]), ALL('Table'[Weight]), ALL('Table'[Sample])), ALLEXCEPT('Table', 'Table'[Dea]) ) RETURN INDEX(regressionResults, 0, 1) ``` 在这里,'Table'应该替换为你的实际表名。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值