基于Spark的物联网设备故障实时检测与分析
⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3908字,阅读大概需要10分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
⏰个人网站:https://jerry-jy.co/❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我
一、业务场景
通过实时计算所有计算机机架在一个滑动窗口上的平均温度,从而发现温度异常的机架,及时检测故障的发生。
二、数据集说明
本案例用到的实时数据说明如下:
- 原始数据文件位于本地/data/dataset/streaming/iot/file1.json和/data/dataset/streaming/iot/file2.json
以下为数据中心的两个数据传感器检测到的两个机架的温度数据:
file1.json:
{
“rack”:”rack1”,”temperature”:99.5,”ts”:”2017-06-02T08:01:01”}
{
“rack”:”rack1”,”temperature”:100.5,”ts”:”2017-06-02T08:06:02”}
{
“rack”:”rack1”,”temperature”:101.0,”ts”:”2017-06-02T08:11:03”}
{
“rack”:”rack1”,”temperature”:102.0,”ts”:”2017-06-02T08:16:04”}
file2.json:
{
“rack”:”rack2”,”temperature”:99.5,”ts”:”2017-06-02T08:01:02”}
{
“rack”:”rack2”,”temperature”:105.5,”ts”:”2017-06-02T08:06:04”}
{
“rack”:”rack2”,”temperature”:104.0,”ts”:”2017-06-02T08:11:06”}
{
“rack”:”rack2”,”temperature”:108.0,”ts”:”2017-06-02T08:16:08”}
三、操作步骤
阶段一、启动HDFS、Spark集群服务
1、启动HDFS集群
在Linux终端窗口下,输入以下命令,启动HDFS集群: