基于Spark的物联网设备故障实时检测与分析

本文介绍如何使用Spark处理物联网设备实时数据,通过计算滑动窗口内机架平均温度,实现故障检测。详细步骤包括启动HDFS、Spark集群,上传及处理数据,创建滑动窗口并分析温度变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3908字,阅读大概需要10分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
⏰个人网站:https://jerry-jy.co/

❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我

一、业务场景

通过实时计算所有计算机机架在一个滑动窗口上的平均温度,从而发现温度异常的机架,及时检测故障的发生。

二、数据集说明

本案例用到的实时数据说明如下:
  - 原始数据文件位于本地/data/dataset/streaming/iot/file1.json和/data/dataset/streaming/iot/file2.json

以下为数据中心的两个数据传感器检测到的两个机架的温度数据:
  file1.json:

   {
   “rack”:”rack1”,”temperature”:99.5,”ts”:”2017-06-02T08:01:01”}
   {
   “rack”:”rack1”,”temperature”:100.5,”ts”:”2017-06-02T08:06:02”}
   {
   “rack”:”rack1”,”temperature”:101.0,”ts”:”2017-06-02T08:11:03”}
   {
   “rack”:”rack1”,”temperature”:102.0,”ts”:”2017-06-02T08:16:04”}

file2.json:

   {
   “rack”:”rack2”,”temperature”:99.5,”ts”:”2017-06-02T08:01:02”}
   {
   “rack”:”rack2”,”temperature”:105.5,”ts”:”2017-06-02T08:06:04”}
   {
   “rack”:”rack2”,”temperature”:104.0,”ts”:”2017-06-02T08:11:06”}
   {
   “rack”:”rack2”,”temperature”:108.0,”ts”:”2017-06-02T08:16:08”}

三、操作步骤

阶段一、启动HDFS、Spark集群服务

1、启动HDFS集群
  在Linux终端窗口下,输入以下命令,启动HDFS集群:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不懂开发的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值