ATMOSPHERIC PHASE SCREEN RECONSTRUCTION IN SAR INTERFOROMETRY USING ACGAN NETWORK(IGARSS,2023)

文章介绍了一种使用生成对抗网络(GAN)的ATMOS-WACGAN方法,用于生成多样化的InSAR干涉图样本,以减少APS误差。该技术通过学习和模拟不同类型的APS,如地形、湍流和降雨影响,提升大气校正的精度。实验结果展示了模型的有效性,为InSAR形变监测提供更准确的数据支持。
摘要由CSDN通过智能技术生成

ABSTRACT

(1)APS是InSAR中主要误差源,干涉图中APS的时空变换可能导致相位的错误解读和形变的不准确估计。
(2)近几年,深度学习去噪模型已经被应用于研究InSAR干涉图中提取APS任务中,但是,现有方法主要使用合成熟悉局训练模型来去除APS。
(3)作者提出了基于GAN的ACGAN,从现有的干涉图中生成更多的APS样本,充分学习与地形、大气湍流和强降水相关的大气延迟误差,并生成具有多种特征的大气相位屏干涉样本。
(4)该技术应用在2020-2022年杭州

INTRODUCTION

InSAR通过处理时序SAR图像,可以邮箱的监测地表形变。APS是InSAR的主要误差源,干涉图中的APS的时空变化会导致相位的错误解释和地表形变的不准确提取。目前,使用外部数据和基于相位的方法来估计和消除APS对InSAR干涉图的影响。
(1)基于外部数据
利用数字天气模型、GNSS、光谱数据(MODIS、MERIS和Sentinel-3),或者将这些组合。
但是这些方法会受限于外部数据的空间和时间分辨率,并且也受到插值误差的影响,难以捕捉局部大气湍流的变化。
GNSS测站分布稀疏,不适合大多数地区的干涉图的APS矫正。
GACOS整合ECMWF和GNSS对对流层延迟估计(integrates operational high-resolution ECMWF data and continuous GNSS tropospheric delay estimates to generate atmospheric correction maps.)
基于外部数据的大气校正方法忽略了局部大气湍流的不均匀性,导致大气校正结果精度较低。
时序InSAR利用时空滤波来减少APS的影响,但是该方法依赖于滤波参数的设置,容易受到时序季节变化的影响,几乎不能去除大气湍流引起的噪声。
(2)基于相位? 作者似乎没讲完全,单一的时空滤波并不算全部的基于相位的处理方法
☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆
(3)dp的去噪模型已经被广泛应用于APS改正任务(ps:这里作者主要介绍的是GAN在其中的功效)
【1】Ghosh采用GAN来减轻对流层引起的相位延迟(2021)
【2】Chen采用MLP与地形和空间数据相结合的方式,提出一种地形相关的大气校正方法
【3】Zhao
(4)作者提出一种名为ATMOS-WACGAN的GAN结构(基于WGAN-GP和ACGAN),用于生成包含多种类型大气相位的InSAR干涉相位样本,考虑了APS的分布特征。
(这篇文章目的其实很明显了,就是想为网络训练提供更加准确的仿真APS)
☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆

METHOLOGY(没太看懂,跟GAN相关程度大些)

研究的流程图如下,我们生成包含多种类型大气相位的更高质量干涉图样本的方法涉及以下步骤:
在这里插入图片描述
(1) 收集Sentinel-1图像以实施数据导入,数字高程模型(DEM)配准和增强光谱多样性(ESD)配准过程。每个幅宽的所有脉冲可以进行镶嵌。
(2) 从选定的干涉图中使用3角秒SRTM DEM消除平地和地形相位。随后,在每个干涉图上执行自适应滤波和最小成本流(MCF)相位展开。展开的干涉图被分成大小为64x64的小批量,用于训练ATMOSWACGAN网络。
(3)ATMMOS-WACGAN利用辅助分类器为GAN提供图像分类能力,最终实现生成四种类型的干涉图样本。生成的展开干涉图被分类为四种类型:具有地形相关大气效应的干涉图、具有湍流大气效应的干涉图、与降雨有关的干涉图以及具有非常短基线和几乎没有APS的干涉图。然后,这四种类型的干涉图经过图像分割,生成大小为64x64的样本,作为ATMOS-WACGAN网络的输入。图1显示了ATMMOS-WACGAN网络的详细架构。它由两个主要组件组成:生成器和鉴别器。生成器包括一个全连接层,四个残差块(每个块都有上采样或下采样),一个批量归一化层,一个卷积层,一个ReLU激活层和一个tanh sigmoid层。生成器旨在生成更复杂的大气相位图案。生成器和鉴别器相互对抗并促进对方。在持续的对抗中,它们将达到纳什均衡。最后,生成器可以捕捉真实样本的分布并生成可以产生假APS样本的APS样本。在本研究中,引入了大气相位矢量(从真实干涉图生成)和随机噪声矢量,并提取它们的特征,为生成APS样本提供条件指导。对于鉴别器,它包括一个卷积层,四个带有下采样的残差块和两个全连接层。为了使网络在训练期间更稳定,我们通过使用Wasserstein距离和梯度惩罚来改进它。与Jensen-Shannon距离相比,Wasserstein距离提供了更好的两个分布之间的重叠度量。梯度惩罚项用于约束鉴别器的梯度范数,从而避免梯度爆炸和消失的问题。最后,在模型训练和推断之后,ATMOS-WACGAN模型可以更好地学习不同类型的大气相位特征,并重建不同类型的大气相位样本。
(4)ATMMOS-WACGAN将输出两个值,一个是将输入样本判断为真实样本的概率,另一个是预测APS类别。因此,ATMMOSWACGAN网络鉴别器的损失函数由鉴别损失SL和分类损失CL组成。为了有效减少低质量生成的APS样本对鉴别器的影响,增加了鉴别器的损失函数的权重系数,使鉴别器可以根据鉴别概率自动选择高质量的生成样本,进一步优化网络。ATMOS-WACGAN的损失函数如下方程所示:
在这里插入图片描述

RESULTS AND DISCUSSION

Datasets

为增加APS数据的多样性,使用ATMMOSWACGAN网络生成四种类型的干涉图样本作为训练数据。收集20201115-20231126在杭州的Sentinel-1数据集,用于模型的训练和验证。经过干涉处理和相位展开后,选择了235个受APS影响的干涉图(每个覆盖12天)和几乎没有APS的干涉图来生成训练数据。由于错误的展开相位可能会在补丁和相邻补丁像素中引入额外的错误,因此使用最近邻插值算法来补充缺失的像素。对于生成的干涉图,使用Sentinel-1帧的第一和第二条带作为训练数据集(见图2中的红色框),第三条带作为验证数据集(见图2中的蓝色框)。为了提高训练效率,将float32数据类型的干涉图分成64×64像素的补丁,对其进行归一化处理,并用作训练GAN模型的输入。
在这里插入图片描述

Training Settings

小批量大小为64,用于训练的迭代次数为10,000。神经网络的权重通过AdamW优化器进行迭代更新,其中参数β1和β2分别为0和0.9。在推理过程中,训练好的生成器模型被用来生成APS样本。

Exerimental Results

图3显示了一些包含APS的不同类型的生成干涉图样本。它表明GAN捕捉了干涉图上不同类型的APS延迟特征。该模型能够充分学习不同类型的大气相位特征,并很好地重构不同类型的大气相位,这说明了我们数据集训练的GAN模型的建模能力。
在这里插入图片描述

CONCLUSION

在本文中,提出了一种带大气相位屏的干涉相位图像重建方法,以改善InSAR领域中干涉图样本的不足。我们在展开后构建了一个干涉图数据集,主要包括四种类型:受地形影响的大气效应干涉图、受湍流大气效应干涉图、与降雨相关的干涉图以及几乎没有APS的非常短时间基线干涉图。我们使用Sentinel-1数据来验证ATMOS-WACGAN在模拟包含大气相位特征的InSAR干涉图中的可行性。接下来,我们将使用深度学习方法基于包含APS的生成InSAR数据集来探索形变提取。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZRX_GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值