TensorFlow2.+下MovingAverage的使用方法

		import tensorflow_addons as tfa
		#需要安装的库
		
        opt = tf.keras.optimizers.Adam(1e-3)
        #先创建优化器
        opt = tfa.optimizers.MovingAverage(opt)
        #在优化器的基础上加入MovingAverage
		
		model_checkpoint_callback = keras.callbacks.ModelCheckpoint("./log/ep{epoch:03d}-{loss:03f}.h5", save_best_only=False, save_weights_only=True)
		#普通权重系数保存方法(h5文件)
		model_movingAvg_checkpoint_callback = tfa.callbacks.AverageModelCheckpoint(True, "./log/movingAvg_ep{epoch:03d}-{loss:03f}.h5", save_best_only=False, save_weights_only=True)
		#MovingAverage权重系数文件的保存方法(h5文件)

		model.fit(x, y, epochs=Epochs, batch_size=batch_size, validation_split=validation_split, shuffle=True, callbacks=[model_checkpoint_callback, model_movingAvg_checkpoint_callback])
		#在训练时的参数callback里面添加MovingAverage的相关信息。
		#MovingAverage系数文件一般是测试的时候用,不会在训练时使用,而且需要在测试的时候比较一下原本的系数权重和MovingAverage系数哪个更好,所以需要把原本的系数权重文件和MovingAverage系数文件一起保存。
		model.load_weights("./log/movingAvg_ep005-0.40000.h5")
		#和普通权重系数一样的加载方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值