高等数学考研笔记(九)

高等数学考研笔记(九):解析几何

  • 向量代数:
    • 数量积: a ⋅ b = ∣ a ∣ ∣ b ∣ c o s < a , b > a\cdot b = |a||b|cos<a,b> ab=abcos<a,b>

      ⇒ \Rightarrow 判断两向量垂直 a ⊥ b ⇔ a ⋅ b = 0 a \perp b \Leftrightarrow a\cdot b = 0 abab=0

    • 向量积: a × b = ∣ i j k a x a y a z b x b y b z ∣ a\times b = \left|\begin{matrix}i&j&k\\a_x&a_y&a_z\\b_x&b_y&b_z \end{matrix} \right| a×b=iaxbxjaybykazbz ∣ a × b ∣ = ∣ a ∣ ∣ b ∣ s i n < a , b > |a\times b| = |a||b|sin<a,b> a×b=absin<a,b>

      ⇒ \Rightarrow 判断两向量平行 a / / b ⇔ a × b = 0 ⃗ a //b \Leftrightarrow a\times b = \vec0 a//ba×b=0

    • 混合积: ( a b c ) = ( a × b ) ⋅ c ∣ a x a y a z b x b y b z c x c y c z ∣ (abc) = (a\times b)\cdot c\left|\begin{matrix}a_x&a_y&a_z\\b_x&b_y&b_z\\c_x&c_y&c_z\\ \end{matrix} \right| (abc)=(a×b)caxbxcxaybycyazbzcz

      ⇒ \Rightarrow 判断三向量共面 ( a b c ) = 0 (abc) = 0 (abc)=0

      ⇒ \Rightarrow 判断两直线异面 ( s 1 s 2 P 1 P 2 ⃗ ) ≠ 0 (s_1s_2\vec{P_1P_2}) \neq 0 (s1s2P1P2 )=0

  • 直线与平面:
    • 直线方程:

      • 一般式方程: { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases}A_1x+B_1y+C_1z+D_1 = 0\\A_2x+B_2y+C_2z+D_2 = 0 \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 该直线为两平面的交线,直线的方向向量: s = n 1 × n 2 s=n_1\times n_2 s=n1×n2
      • 对称式方程: x − x 0 m = y − y 0 n = z − z 0 p \cfrac{x-x_0}{m} =\cfrac{y-y_0}{n} =\cfrac{z-z_0}{p} mxx0=nyy0=pzz0,其中 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)是直线任一点,方向向量 s = ( m , n , p ) s=(m,n,p) s=(m,n,p)
      • 参数式方程: { x = x 0 + m t y = y 0 + n t z = z 0 + p t \begin{cases}x = x_0+mt\\y = y_0+nt\\z = z_0+pt \end{cases} x=x0+mty=y0+ntz=z0+pt,其中 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)是直线任一点,方向向量 s = ( m , n , p ) s=(m,n,p) s=(m,n,p)
    • 平面方程:

      • 一般式方程: A x + B y + C z + D = 0 Ax+By+Cz+D = 0 Ax+By+Cz+D=0,其中 n = ( A , B , C ) n = (A,B,C) n=(A,B,C)是平面的法向量;

      • 点法式方程: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0) = 0 A(xx0)+B(yy0)+C(zz0)=0,其中 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)是平面上任一点;

      • 平面束方程:过直线 l l l { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases}A_1x+B_1y+C_1z+D_1 = 0\\A_2x+B_2y+C_2z+D_2 = 0 \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0的平面束方程为:
        A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 A_1x+B_1y+C_1z+D_1 +\lambda(A_2x+B_2y+C_2z+D_2) = 0 A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0

    • 平面与平面的位置关系:

      设平面 Π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 \Pi_1:A_1x+B_1y+C_1z+D_1 = 0 Π1:A1x+B1y+C1z+D1=0,平面 Π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 \Pi_2:A_2x+B_2y+C_2z+D_2 = 0 Π2:A2x+B2y+C2z+D2=0

      • 平行: Π 1 / / Π 2 ⇔ n 1 / / n 2 ⇔ A 1 A 2 = B 1 B 2 = C 1 C 2 \Pi_1//\Pi_2 \Leftrightarrow n_1//n_2 \Leftrightarrow \cfrac{A_1}{A_2}=\cfrac{B_1}{B_2}=\cfrac{C_1}{C_2} Π1//Π2n1//n2A2A1=B2B1=C2C1
      • 垂直: Π 1 ⊥ Π 2 ⇔ n 1 ⊥ n 2 ⇔ A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 \Pi_1\perp\Pi_2 \Leftrightarrow n_1\perp n_2\Leftrightarrow A_1A_2+B_1B_2+C_1C_2=0 Π1Π2n1n2A1A2+B1B2+C1C2=0
      • 二面角: c o s < Π 1 , Π 2 > = c o s < n 1 , n 2 > = ∣ n 1 ⋅ n 2 ∣ ∣ n 1 ∣ ∣ n 2 ∣ cos<\Pi_1,\Pi_2> = cos<n_1,n_2> = \cfrac{|n_1\cdot n_2|}{|n_1||n_2|} cos<Π1,Π2>=cos<n1,n2>=n1n2n1n2
    • 直线与直线的位置关系:

      设直线 L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 L_1:\cfrac{x-x_1}{m_1} =\cfrac{y-y_1}{n_1} =\cfrac{z-z_1}{p_1} L1:m1xx1=n1yy1=p1zz1,直线 L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_2:\cfrac{x-x_2}{m_2} =\cfrac{y-y_2}{n_2} =\cfrac{z-z_2}{p_2} L2:m2xx2=n2yy2=p2zz2

      • 平行: L 1 / / L 2 ⇔ s 1 / / s 2 ⇔ m 1 m 2 = n 1 n 2 = p 1 p 2 L1//L_2 \Leftrightarrow s_1 // s_2 \Leftrightarrow \cfrac{m_1}{m_2}=\cfrac{n_1}{n_2}=\cfrac{p_1}{p_2} L1//L2s1//s2m2m1=n2n1=p2p1
      • 垂直: L 1 ⊥ L 2 ⇔ s 1 ⊥ s 2 ⇔ m 1 m 2 + n 1 n 2 + p 1 p 2 = 0 L1\perp L_2 \Leftrightarrow s_1 \perp s_2 \Leftrightarrow m_1m_2+n_1n_2+p_1p_2 = 0 L1L2s1s2m1m2+n1n2+p1p2=0
      • 二线角: c o s < L 1 , L 2 > = c o s < s 1 , s 2 > = ∣ s 1 ⋅ s 2 ∣ ∣ s 1 ∣ ∣ s 2 ∣ cos<L_1,L_2> = cos<s_1,s_2> = \cfrac{|s_1\cdot s_2|}{|s_1||s_2|} cos<L1,L2>=cos<s1,s2>=s1s2s1s2
    • 直线与平面的位置关系:

      设平面 Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D = 0 Π:Ax+By+Cz+D=0,直线 L : x − x m = y − y n = z − z p L:\cfrac{x-x}{m} =\cfrac{y-y}{n} =\cfrac{z-z}{p} L:mxx=nyy=pzz

      • 平行: Π / / L ⇔ n ⊥ s ⇔ A m + B n + C p = 0 \Pi // L \Leftrightarrow n \perp s \Leftrightarrow Am+Bn+Cp = 0 Π//LnsAm+Bn+Cp=0
      • 垂直: Π ⊥ L ⇔ n / / s ⇔ A m = B n = C p \Pi \perp L \Leftrightarrow n // s \Leftrightarrow \cfrac{A}{m}=\cfrac{B}{n}=\cfrac{C}{p} ΠLn//smA=nB=pC
      • 线面角: s i n < Π , L > = c o s < n , s > = ∣ n ⋅ s ∣ ∣ n ∣ ∣ s ∣ sin<\Pi,L> = cos<n,s> = \cfrac{|n\cdot s|}{|n||s|} sin<Π,L>=cos<n,s>=nsns
  • 平面曲线:
    • 摆线: { x = a ( θ − c o s θ ) y = a ( 1 − s i n θ ) \begin{cases}x=a(\theta-cos\theta)\\y=a(1-sin\theta) \end{cases} {x=a(θcosθ)y=a(1sinθ)
      在这里插入图片描述

    • 星形线: { x = a c o s 3 θ y = a s i n 3 θ \begin{cases}x=acos^3\theta\\y=asin^3\theta\end{cases} {x=acos3θy=asin3θ
      在这里插入图片描述

    • 心脏线: ρ = a ( 1 − c o s θ ) \rho = a(1-cos\theta) ρ=a(1cosθ)
      在这里插入图片描述

    • 伯努利双纽线: ρ 2 = a 2 c o s 2 θ \rho^2=a^2cos2\theta ρ2=a2cos2θ 在这里插入图片描述
      ρ 2 = a 2 s i n 2 θ \rho^2=a^2sin2\theta ρ2=a2sin2θ 在这里插入图片描述

    • 三叶玫瑰线: ρ = a c o s 3 θ \rho=acos3\theta ρ=acos3θ 在这里插入图片描述
      ρ = a s i n 3 θ \rho=asin3\theta ρ=asin3θ 在这里插入图片描述

    • 四叶玫瑰线: ρ = a c o s 2 θ \rho=acos2\theta ρ=acos2θ 在这里插入图片描述
      ρ = a s i n 2 θ \rho=asin2\theta ρ=asin2θ 在这里插入图片描述

  • 空间曲线和曲面:
    • 空间曲线:

      • 参数式方程: { x = x ( t ) y = y ( t ) z = z ( t ) \begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases} x=x(t)y=y(t)z=z(t)
      • 一般式方程: { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases}F(x,y,z)=0\\G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0
    • 空间曲面:

      • 参数式方程: { x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) \begin{cases}x=x(u,v)\\y=y(u,v)\\z=z(u,v)\end{cases} x=x(u,v)y=y(u,v)z=z(u,v)
      • 一般式方程: F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0
    • 旋转面:

      设有 x O y xOy xOy平面上的曲线 C : { f ( x , y ) = 0 z = 0 C:\begin{cases}f(x,y)=0\\z=0 \end{cases} C:{f(x,y)=0z=0

      • 绕x轴旋转产生的旋转面方程: f ( x , ± y 2 + z 2 ) = 0 f(x,\pm \sqrt{y^2+z^2})=0 f(x,±y2+z2 )=0
      • 绕y轴旋转产生的旋转面方程: f ( ± x 2 + z 2 , y ) = 0 f(\pm \sqrt{x^2+z^2},y)=0 f(±x2+z2 ,y)=0
    • 柱面:

      • 一般式方程:设准线为 C : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 C:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} C:{F(x,y,z)=0G(x,y,z)=0,母线的方向向量 ( m , n , p ) (m,n,p) (m,n,p),则柱面方程为:
        { F ( x 0 , y 0 , z 0 ) = 0 G ( x 0 , y 0 , z 0 ) = 0 x − x 0 m = y − y 0 n = z − z 0 p \begin{cases}F(x_0,y_0,z_0)=0\\G(x_0,y_0,z_0)=0\\\cfrac{x-x_0}{m} =\cfrac{y-y_0}{n} =\cfrac{z-z_0}{p} \end{cases} F(x0,y0,z0)=0G(x0,y0,z0)=0mxx0=nyy0=pzz0
        消去 x 0 , y 0 , z 0 x_0,y_0,z_0 x0,y0,z0即可得到;

      • 参数式方程:设准线为 C : { x = x ( t ) y = y ( t ) z = z ( t ) C:\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases} C:x=x(t)y=y(t)z=z(t),母线的方向向量 ( m , n , p ) (m,n,p) (m,n,p),则柱面方程为:
        { x = x ( t ) + m s y = y ( t ) + n s z = z ( t ) + t s \begin{cases}x=x(t)+ms\\y=y(t)+ns\\z=z(t)+ts\end{cases} x=x(t)+msy=y(t)+nsz=z(t)+ts

    • 二次曲面:

      • 切平面方程:设切点为 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0),则: x 2 → x 0 x , x → x 0 + x 2 , x y → x 0 y + y 0 x 2 x^2 \rightarrow x_0x,x\rightarrow \cfrac{x_0+x}{2},xy\rightarrow \cfrac{x_0y+y_0x}{2} x2x0x,x2x0+x,xy2x0y+y0x

      • 二次锥面: x 2 a 2 + y 2 b 2 − z 2 c 2 = 0 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-\cfrac{z^2}{c^2}=0 a2x2+b2y2c2z2=0(见图4.24)

      • 椭球面: x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1(见图4.25)

        在这里插入图片描述

      • 单叶双曲面: x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-\cfrac{z^2}{c^2}=1 a2x2+b2y2c2z2=1(见图4.26)

      • 双叶双曲面: − x 2 a 2 − y 2 b 2 + z 2 c 2 = 1 -\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}+\cfrac{z^2}{c^2}=1 a2x2b2y2+c2z2=1(见图4.27)

      在这里插入图片描述

      • 椭圆抛物面: x 2 a 2 + y 2 b 2 = 2 p z \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2} = 2pz a2x2+b2y2=2pz(见图4.28)

      • 双曲抛物面: x 2 a 2 − y 2 b 2 = 2 p z \cfrac{x^2}{a^2}-\cfrac{y^2}{b^2} = 2pz a2x2b2y2=2pz(见图4.29)

      在这里插入图片描述

    • 牟合方盖:(第一象限)

    在这里插入图片描述

  • 投影问题:
    • 向量在向量上的投影:求向量 a a a在向量 b b b上的投影: P b a = a ⋅ b ∣ b ∣ P_b a = \cfrac{a\cdot b}{|b|} Pba=bab

    • 点在平面上的投影:求点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)在平面 Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D=0 Π:Ax+By+Cz+D=0上的投影点 Q Q Q

      ① 过 P P P作垂直于平面 Π \Pi Π的直线 L : x − x 0 A = y − y 0 B = z − z 0 C L:\cfrac{x-x_0}{A} = \cfrac{y-y_0}{B} = \cfrac{z-z_0}{C} L:Axx0=Byy0=Czz0

      ② 求直线 L L L和平面 Π \Pi Π的交点 Q Q Q { L : x − x 0 A = y − y 0 B = z − z 0 C Π : A x + B y + C z + D = 0 \begin{cases} L:\cfrac{x-x_0}{A} = \cfrac{y-y_0}{B} = \cfrac{z-z_0}{C}\\\Pi:Ax+By+Cz+D=0\end{cases} L:Axx0=Byy0=Czz0Π:Ax+By+Cz+D=0

    • 点在直线上的投影:求点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)在直线 L : x − x 1 m = y − y 1 n = z − z 1 p L:\cfrac{x-x_1}{m} = \cfrac{y-y_1}{n} = \cfrac{z-z_1}{p} L:mxx1=nyy1=pzz1的投影点 Q Q Q

      ① 过 P P P作垂直于直线 L L L的平面 Π : m ( x − x 0 ) + n ( y − y 0 ) + p ( z − z 0 ) = 0 \Pi:m(x-x_0)+n(y-y_0)+p(z-z_0) = 0 Π:m(xx0)+n(yy0)+p(zz0)=0

      ② 求直线 L L L和平面 Π \Pi Π的交点 Q Q Q { L : x − x 1 m = y − y 1 n = z − z 1 p Π : m ( x − x 0 ) + n ( y − y 0 ) + p ( z − z 0 ) = 0 \begin{cases} L:\cfrac{x-x_1}{m} = \cfrac{y-y_1}{n} = \cfrac{z-z_1}{p}\\\Pi:m(x-x_0)+n(y-y_0)+p(z-z_0) = 0\end{cases} L:mxx1=nyy1=pzz1Π:m(xx0)+n(yy0)+p(zz0)=0

    • 直线在平面上的投影:求直线 L : { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 L:\begin{cases} A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0\end{cases} L:{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 在平面 Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D=0 Π:Ax+By+Cz+D=0上的投影直线 L ′ L' L

      ① 求过直线 L L L且垂直于 Π \Pi Π的平面 Π ′ : A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 \Pi':A_1x+B_1y+C_1z+D_1 +\lambda(A_2x+B_2y+C_2z+D_2) = 0 Π:A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0

      ② 求平面 Π \Pi Π和平面 Π ′ \Pi' Π的交线
      L ′ : { Π ′ : A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 Π : A x + B y + C z + D = 0 L':\begin{cases} \Pi':A_1x+B_1y+C_1z+D_1 +\lambda(A_2x+B_2y+C_2z+D_2) = 0\\\Pi:Ax+By+Cz+D=0\end{cases} L:{Π:A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0Π:Ax+By+Cz+D=0

    • 空间曲线在坐标面上的投影:求曲线 C : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 C:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} C:{F(x,y,z)=0G(x,y,z)=0 x O y xOy xOy平面上的投影曲线 C ′ C' C

      ① 消去 z z z,求曲线 C C C平行于 z z z轴的投影柱面 Γ : H ( x , y ) = 0 \Gamma: H(x,y) = 0 Γ:H(x,y)=0

      ② 求柱面 Γ \Gamma Γ x O y xOy xOy平面上的投影曲线 C ′ : { H ( x , y ) = 0 z = 0 C':\begin{cases}H(x,y)=0\\z=0\end{cases} C:{H(x,y)=0z=0

  • 距离问题:
    • 两点之间的距离:求点 P 1 ( x 1 , y 1 , z 1 ) P_1(x_1,y_1,z_1) P1(x1,y1,z1)和点 P 2 ( x 2 , y 2 , z 2 ) P_2(x_2,y_2,z_2) P2(x2,y2,z2)的距离:
      d = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 d = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2} d=(x1x2)2+(y1y2)2+(z1z2)2

    • 点到平面的距离:求点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)到平面 Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D=0 Π:Ax+By+Cz+D=0的距离:
      d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = \cfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

    • 平行平面之间的距离:求平面 Π 1 : A x + B y + C z + D 1 = 0 \Pi_1: Ax+By+Cz+D_1=0 Π1:Ax+By+Cz+D1=0和平面 Π 2 : A x + B y + C z + D 2 = 0 \Pi_2:Ax+By+Cz+D_2=0 Π2:Ax+By+Cz+D2=0的距离:
      d = ∣ D 1 − D 2 ∣ A 2 + B 2 + C 2 d = \cfrac{|D_1-D_2|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 D1D2

    • 点到直线的距离:求点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)到直线 L : x − x 1 m = y − y 1 n = z − z 1 p L:\cfrac{x-x_1}{m} = \cfrac{y-y_1}{n} = \cfrac{z-z_1}{p} L:mxx1=nyy1=pzz1的距离:
      d = ∣ s × P Q ⃗ ∣ ∣ s ∣ d = \cfrac{|s\times \vec{PQ}|}{|s|} d=ss×PQ
      其中, s = ( m , n , p ) , P Q ⃗ = ( x 0 − x 1 , y 0 − y 1 , z 0 − z 1 ) s=(m,n,p),\vec{PQ} = (x_0-x_1,y_0-y_1,z_0-z_1) s=(m,n,p),PQ =(x0x1,y0y1,z0z1)

    • 异面直线间的距离:求异面直线 L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 L_1:\cfrac{x-x_1}{m_1} = \cfrac{y-y_1}{n_1} = \cfrac{z-z_1}{p_1} L1:m1xx1=n1yy1=p1zz1和直线 L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_2:\cfrac{x-x_2}{m_2} = \cfrac{y-y_2}{n_2} = \cfrac{z-z_2}{p_2} L2:m2xx2=n2yy2=p2zz2的距离:
      d = ∣ n ⋅ P Q ⃗ ∣ ∣ n ∣ d = \cfrac{|n\cdot\vec{PQ}|}{|n|} d=nnPQ
      其中, n = s 1 × s 2 , s 1 = ( m 1 , n 1 , p 1 ) , s 2 = ( m 2 , n 2 , p 2 ) , P Q ⃗ = ( x 1 − x 2 , y 1 − y 2 , z 1 − z 2 ) n=s_1\times s_2,s_1=(m_1,n_1,p_1),s_2=(m_2,n_2,p_2),\vec{PQ} = (x_1-x_2,y_1-y_2,z_1-z_2) n=s1×s2,s1=(m1,n1,p1),s2=(m2,n2,p2),PQ =(x1x2,y1y2,z1z2)

  • 平面图形面积:
    • 曲线 y = y 1 ( x ) y = y_1(x) y=y1(x)和曲线 y = y 2 ( x ) y=y_2(x) y=y2(x) x = a , x = b x=a,x=b x=a,x=b围成的平面图形面积:
      S = ∫ a b ( y 1 ( x ) − y 2 ( x ) ) d x S = \int_a^b (y_1(x)-y_2(x))dx S=ab(y1(x)y2(x))dx

    • 极坐标曲线 r = r ( θ ) r=r(\theta) r=r(θ)介于射线 θ = a , θ = b \theta=a,\theta=b θ=a,θ=b之间的曲边扇形面积:
      S = 1 2 ∫ a b r 2 ( θ ) d θ S = \cfrac{1}{2}\int_a^br^2(\theta)d\theta S=21abr2(θ)dθ

    • 设任一平面图形的定义域为 D D D,则其面积为:
      S = ∬ D d x d y S = \iint\limits_{D} dxdy S=Ddxdy

  • 平面曲线弧长:
    • 参数方程曲线 { x = x ( t ) y = y ( t ) , a ≤ t ≤ b \begin{cases}x=x(t)\\y=y(t)\end{cases},a\le t\le b {x=x(t)y=y(t),atb的弧长:
      s = ∫ a b x ′ 2 ( t ) + y ′ 2 ( t ) d t s = \int_a^b \sqrt{x'^2(t)+y'^2(t)}dt s=abx2(t)+y2(t) dt

    • 直角坐标曲线 y = y ( x ) , a ≤ x ≤ b y=y(x),a\le x\le b y=y(x),axb的弧长:
      s = ∫ a b 1 + y ′ 2 ( x ) d x s = \int_a^b\sqrt{1+y'^2(x)}dx s=ab1+y2(x) dx

    • 极坐标曲线 r = r ( θ ) , a ≤ θ ≤ b r=r(\theta),a\le \theta \le b r=r(θ),aθb的弧长:
      s = ∫ a b r 2 + r ′ 2 ( θ ) d θ s = \int_a^b\sqrt{r^2+r'^2(\theta)}d\theta s=abr2+r2(θ) dθ

  • 旋转体体积:
    • 曲线 y = y 1 ( x ) , y = y 2 ( x ) y=y_1(x),y=y_2(x) y=y1(x),y=y2(x) x = a , x = b x=a,x=b x=a,x=b围成的曲边梯形绕x轴旋转一周的旋转体体积:
      V = π ∫ a b [ y 1 2 ( x ) − y 2 2 ( x ) ] d x V = \pi\int_a^b[y_1^2(x)-y^2_2(x)]dx V=πab[y12(x)y22(x)]dx

    • 曲线 y = y 1 ( x ) , y = y 2 ( x ) y=y_1(x),y=y_2(x) y=y1(x),y=y2(x) x = a , x = b x=a,x=b x=a,x=b围成的曲边梯形绕y轴旋转一周的旋转体体积:
      V = 2 π ∫ a b x [ y 1 ( x ) − y 2 ( x ) ] d x V = 2\pi\int_a^b x[y_1(x)-y_2(x)]dx V=2πabx[y1(x)y2(x)]dx

  • 旋转曲面面积:
    • [ a , b ] [a,b] [a,b]上的曲线 C : y = y ( x ) C:y=y(x) C:y=y(x)的弧绕x轴旋转一周的旋转曲面面积:
      S = 2 π ∫ C ∣ y ∣ d s = 2 π ∫ a b ∣ y ∣ 1 + y ′ 2 d x S = 2\pi\int_C |y|ds = 2\pi\int_a^b |y|\sqrt{1+y'^2}dx S=2πCyds=2πaby1+y2 dx

    • [ a , b ] [a,b] [a,b]上的曲线 C : y = y ( x ) C:y=y(x) C:y=y(x)的弧绕y轴旋转一周的旋转曲面面积:
      S = 2 π ∫ C ∣ x ∣ d s = 2 π ∫ a b ∣ x ∣ 1 + y ′ 2 d x S = 2\pi\int_C |x|ds = 2\pi\int_a^b |x|\sqrt{1+y'^2}dx S=2πCxds=2πabx1+y2 dx

  • 形心坐标:
    • 弧形心坐标公式: x ‾ = ∫ C x d s l , y ‾ = ∫ C y d s l \overline{x} = \cfrac{\int_{C}x ds}{l},\overline{y} = \cfrac{\int_{C}y ds}{l} x=lCxds,y=lCyds
    • 面形心坐标公式: x ‾ = ∬ S x d σ S , y ‾ = ∬ S y d σ S \overline{x} = \cfrac{\iint\limits_{S}x d\sigma}{S},\overline{y} = \cfrac{\iint\limits_{S}y d\sigma}{S} x=SSxdσ,y=SSydσ
    • 体形心坐标公式: x ‾ = ∭ Ω x d V V , y ‾ = ∭ Ω y d V V \overline{x} = \cfrac{\iiint\limits_{\Omega}x dV}{V},\overline{y} = \cfrac{\iiint\limits_{\Omega}y dV}{V} x=VΩxdV,y=VΩydV
  • 质心坐标:
    • 弧质心坐标公式: x ‾ = ∫ C x ρ d s ∫ C ρ d s , y ‾ = ∫ C y ρ d s ∫ C ρ d s \overline{x} = \cfrac{\int_{C}x\rho ds}{\int_C \rho ds},\overline{y} = \cfrac{\int_{C}y \rho ds}{\int_C \rho ds} x=CρdsCxρds,y=CρdsCyρds
    • 面质心坐标公式: x ‾ = ∬ S x ρ d S ∬ S ρ d S , y ‾ = ∬ S y ρ d S ∬ S ρ d S \overline{x} = \cfrac{\iint\limits_{S}x \rho dS}{\iint\limits_{S}\rho dS},\overline{y} = \cfrac{\iint\limits_{S}y \rho dS}{\iint\limits_{S}\rho dS} x=SρdSSxρdS,y=SρdSSyρdS
    • 体质心坐标公式: x ‾ = ∭ Ω x ρ d V ∭ Ω ρ d V , y ‾ = ∭ Ω y ρ d V ∭ Ω ρ d V \overline{x} = \cfrac{\iiint\limits_{\Omega}x\rho dV}{\iiint\limits_{\Omega} \rho dV},\overline{y} = \cfrac{\iiint\limits_{\Omega}y \rho dV}{\iiint\limits_{\Omega} \rho dV} x=ΩρdVΩxρdV,y=ΩρdVΩyρdV
  • 转动惯量:
    • 平面: I x = ∬ D y 2 ρ d σ , I y = ∬ D x 2 ρ d σ I_x = \iint\limits_{D}y^2\rho d\sigma,I_y = \iint\limits_{D}x^2\rho d\sigma Ix=Dy2ρdσ,Iy=Dx2ρdσ
    • 曲线: I x = ∫ C ( y 2 + z 2 ) ρ d s , I y = ∫ C ( x 2 + z 2 ) ρ d s , I z = ∫ C ( x 2 + y 2 ) ρ d s I_x = \int_{C}(y^2+z^2)\rho ds,I_y = \int_{C}(x^2+z^2)\rho ds,I_z = \int_{C}(x^2+y^2)\rho ds Ix=C(y2+z2)ρds,Iy=C(x2+z2)ρds,Iz=C(x2+y2)ρds
    • 曲面: I x = ∬ S ( y 2 + z 2 ) ρ d S , I y = ∬ S ( x 2 + z 2 ) ρ d S , I z = ∬ S ( x 2 + y 2 ) ρ d S I_x = \iint\limits_{S}(y^2+z^2)\rho dS,I_y = \iint\limits_{S}(x^2+z^2)\rho dS,I_z = \iint\limits_{S}(x^2+y^2)\rho dS Ix=S(y2+z2)ρdS,Iy=S(x2+z2)ρdS,Iz=S(x2+y2)ρdS
    • 空间体: I x = ∭ v ( y 2 + z 2 ) ρ d V , I y = ∬ V ( x 2 + z 2 ) ρ d V , I z = ∬ V ( x 2 + y 2 ) ρ d V I_x = \iiint\limits_{v}(y^2+z^2)\rho dV,I_y = \iint\limits_{V}(x^2+z^2)\rho dV,I_z = \iint\limits_{V}(x^2+y^2)\rho dV Ix=v(y2+z2)ρdV,Iy=V(x2+z2)ρdV,Iz=V(x2+y2)ρdV


  • 6
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值