矩阵:
线性代数考研笔记(二):矩阵
-
矩阵相关概念:
-
方阵:行数和列数相等的矩阵;
-
对角矩阵:除了主对角线上元素外,其他元素均为0的矩阵,记作 d i a g ( a 1 , a 2 , . . . , a n ) diag(a_1,a_2,...,a_n) diag(a1,a2,...,an);
-
单位矩阵:主对角线元素全为1的对角矩阵,记为$;
-
逆矩阵:对于矩阵 A A A,若存在矩阵 B B B使得 A B = E AB = E AB=E,则称 B B B为 A A A的逆矩阵,记作 A − 1 A^{-1} A−1;
-
置换矩阵:方形二进制矩阵,它在每行和每列中只有一个1,而在其他地方则为0,有性质: P 2 = E P^2=E P2=E;
-
-
矩阵初等变换:
-
数乘变换 ⇒ \Rightarrow ⇒ E ( i ( k ) ) E(i(k)) E(i(k));
-
消法变换 ⇒ \Rightarrow ⇒ E ( i , j ( k ) ) E(i,j(k)) E(i,j(k));
-
交换变换 ⇒ \Rightarrow ⇒ E ( i , j ) E(i,j) E(i,j);
-
矩阵乘法的意义:若 A × B = C A\times B = C A×B=C,意味着:
- c i j = ∑ k = 1 n a i k b k j c_{ij} = \sum\limits_{k=1}^na_{ik}b_{kj} cij=k=1∑naikbkj;
- 给 B B B左乘矩阵 A A A,相当于依次用 A A A的第 i i i个行向量的各个分量作为 B B B中每个行向量的权重,加权求和(行变换)得到的 C C C的第 i i i个行向量;特殊地,若 A A A只有一个行向量,则 C C C就是 B B B的各行加权求和生成的一个行向量;
- 给 A A A右乘矩阵 B B B,相当于依次用 B B B的第 i i i个列向量的各个分量作为 A A A中每个列向量的权重,加权求和(列变换)得到的 C C C的第 i i i个列向量;特殊地,若 B B B只有一个列向量,则 C C C就是 A A A的各列加权求和生成的一个列向量;
-
-
逆矩阵相关性质:
- 主对角矩阵的逆矩阵: d i a g ( a 1 , a 2 , . . . , a n ) − 1 = d i a g ( 1 a 1 , 1 a 2 , . . . . 1 a n ) diag(a_1,a_2,...,a_n)^{-1} = diag(\frac{1}{a_1},\frac{1}{a_2},....\frac{1}{a_ n}) diag(a1,a2,...,an)−1=diag(a11,a21,....an1);
- 副对角矩阵的逆矩阵: d i a g ′ ( a 1 , a 2 , . . . , a n ) − 1 = d i a g ′ ( 1 a n , 1 a n − 1 , . . . . 1 a 1 ) diag'(a_1,a_2,...,a_n)^{-1} = diag'(\frac{1}{a_n},\frac{1}{a_{n-1}},....\frac{1}{a_ 1}) diag′(a1,a2,...,an)−1=diag′(an1,an−11,....a11);
- 2x2矩阵的逆矩阵: [ A B C D ] − 1 = 1 A D − B C [ D − B − C A ] \left[\begin{matrix} A & B \\ C & D \\ \end{matrix}\right]^{-1} = \cfrac{1}{AD-BC} \left[\begin{matrix} D & -B \\ -C & A \\ \end{matrix}\right] [ACBD]−1=AD−BC1[D−C−BA];
- 分块矩阵的逆矩阵:
- 若分块矩阵: A = [ A O O B ] A = \left[\begin{matrix}A & O\\O & B \end{matrix} \right] A=[AOOB],则 A − 1 = [ A − 1 O O B − 1 ] A^{-1} = \left[\begin{matrix}A^{-1} & O\\O & B^{-1} \end{matrix} \right] A−1=[A−1OOB−1];
- 若分块矩阵: A = [ O A B O ] A = \left[\begin{matrix}O & A\\B & O \end{matrix} \right] A=[OBAO],则 A − 1 = [ O B − 1 A − 1 O ] A^{-1} = \left[\begin{matrix}O &B^{-1}\\A^{-1}&O \end{matrix} \right] A−1=[OA−1B−1O];
- 逆矩阵的行列式: ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}| = \cfrac{1}{|A|} ∣A−1∣=∣A∣1;
- 逆矩阵的运算法则:
- ( A B ) − 1 = B − 1 × A − 1 (AB)^{-1} = B^{-1} \times A^{-1} (AB)−1=B−1×A−1;
- ( A + B ) − 1 = B − 1 × ( A − 1 + B − 1 ) × A − 1 (A+B)^{-1}=B^{-1}\times(A^{-1}+B^{-1})\times A^{-1} (A+B)−1=B−1×(A−1+B−1)×A−1;
- 逆矩阵的求解方法:
- 伴随矩阵法: A ∗ A = ∣ A ∣ E ⇒ A − 1 = A ∗ ∣ A ∣ A^*A = |A|E \Rightarrow A^{-1} = \cfrac{A^*}{|A|} A∗A=∣A∣E⇒A−1=∣A∣A∗;
- 高斯-乔丹消元法: ( A ∣ E ) ⇒ ( E ∣ A − 1 ) (A | E) \Rightarrow (E | A^{-1}) (A∣E)⇒(E∣A−1)
-
分块矩阵的运算法则:
- 若 A m × n , B m × n A_{m\times n}, B_{m\times n} Am×n,Bm×n采用相同的分块法,可以直接将子块当作元素进行加减运算;
- 若 A m × l , B l × n A_{m\times l}, B_{l\times n} Am×l,Bl×n各对应位置的子块符合矩阵乘法的行列条件,则可以直接将子块当作元素进行乘法运算;
- 若矩阵: A = [ A 11 A 12 . . . A 1 n A 21 A 22 . . . A 2 n A m 1 A m 2 . . . A m n ] A =\left[\begin{matrix} A_{11}&A_{12}&...&A_{1n} \\ A_{21}&A_{22}&...&A_{2n} \\ A_{m1}&A_{m2}&...&A_{mn} \\ \end{matrix}\right] A=⎣⎡A11A21Am1A12A22Am2.........A1nA2nAmn⎦⎤,则 A T = [ A 11 T A 21 T . . . A m 1 T A 12 T A 22 T . . . A m 2 T A 1 n T A 2 n T . . . A m n T ] A^T =\left[\begin{matrix} A_{11}^T&A_{21}^T&...&A_{m1}^T \\ A_{12}^T&A_{22}^T&...&A_{m2}^T \\ A_{1n}^T&A_{2n}^T&...&A_{mn}^T \\ \end{matrix}\right] AT=⎣⎡A11TA12TA1nTA21TA22TA2nT.........Am1TAm2TAmnT⎦⎤;
- 若分块对角矩阵: A = [ A O O B ] A = \left[\begin{matrix}A & O\\O & B \end{matrix} \right] A=[AOOB],则 A n = [ A n O O B n ] A^{n} = \left[\begin{matrix}A^{n} & O\\O & B^{n} \end{matrix} \right] An=[AnOOBn];
-
方阵的特征根和特征向量:
- 定义:使得方阵A 满足 ∣ A − λ E ∣ = 0 |A-λE|=0 ∣A−λE∣=0的λ的值,叫做A的特征根,由每个λ确定的矩阵方程: ( A − λ E ) X = O (A-λE)X = O (A−λE)X=O 的非零解向量,叫做A的特征向量,对应的方程称为特征方程;
- 性质:
- n阶方阵在复数范围内有n个特征根(注意:重根按照重数计算);
- Σ λ i = Σ a i i \Sigma \lambda_i = \Sigma a_{ii} Σλi=Σaii,(等式右边称为矩阵A的迹);
- ∏ λ i = ∣ A ∣ \prod \lambda_i = |A| ∏λi=∣A∣;
- 若λ是A的特征根,则f(λ) 是f(A)的特征根( A − 1 A^{-1} A−1有特征值 λ − 1 λ^{-1} λ−1),且 A A A与 f ( A ) f(A) f(A)的特征向量相同;
- 若λ是A的特征根,则 A ∗ A^* A∗有特征根 ∣ A ∣ λ \cfrac{|A|}{λ} λ∣A∣,且二者有相同的特征向量;
- 上/下三角矩阵的主对角线元素就是矩阵的特征值;
- 不可逆矩阵A必有特征根0;
- 矩阵不同的特征值对应的特征向量一定线性无关;
- A的某个特征值λ的特征子空间的维数叫做λ的几何重数,同时称λ的重根数也称为代数重数 ,则任意特征值的几何重数不超过其代数重数 ;
- 单根有唯一的特征向量,重根的线性无关的特征向量个数不超过重根数;
- 特殊地, λ = 0 \lambda=0 λ=0的几何重数一定等于代数重数,因为其特征方程 ( λ E − A ) x = 0 ⇒ A x = 0 (\lambda E-A)x=0 \Rightarrow Ax = 0 (λE−A)x=0⇒Ax=0 的解就是齐次方程 A x = 0 Ax= 0 Ax=0的解向量的基础解系,因此几何重数为 r ( x ) = n − r ( A ) r(x)=n-r(A) r(x)=n−r(A),而已知 ∣ λ E − A ∣ |\lambda E-A| ∣λE−A∣的零解就是 n − r ( A ) n-r(A) n−r(A)重根,因此代数重数也为 n − r ( A ) n-r(A) n−r(A);
- A × B A\times B A×B与 B × A B\times A B×A有相同的非零特征值,且若 A × B A\times B A×B的特征向量为 x x x,则 B × A B\times A B×A的特征向量为 B x Bx Bx;
- 已知非零向量 α , β \alpha,\beta α,β,则 r ( β α T ) = 1 , t r ( β α T ) = α T β , λ ( β α T ) = t r ( β α T ) , 0 , 0 , . . r(\beta\alpha^T) = 1,tr(\beta\alpha^T) = \alpha^T\beta,\lambda(\beta\alpha^T) = tr(\beta\alpha^T),0,0,.. r(βαT)=1,tr(βαT)=αTβ,λ(βαT)=tr(βαT),0,0,..;
-
正交矩阵:
-
定义:满足 A T = A − 1 A^T = A^{-1} AT=A−1的矩阵;
-
性质:
- ∣ A ∣ = ± 1 , λ ( A ) = ± 1 |A| = \pm1,λ(A) = \pm1 ∣A∣=±1,λ(A)=±1;
- 若 ∣ A ∣ = 1 |A| = 1 ∣A∣=1,则至少有一根1 ; 若 ∣ A ∣ = − 1 |A| = -1 ∣A∣=−1,则至少有一根 -1;
- A的行(列)向量构成标准正交向量组;
- 若 A A A是正交矩阵,则 A − 1 , A T A^{-1},A^T A−1,AT也是正交矩阵;
- 若 A , B A,B A,B是正交矩阵,则 A × B A\times B A×B也是正交矩阵;
- a i j = ∣ A ∣ × A i j a_{ij} = |A|\times A_{ij} aij=∣A∣×Aij;
-
施密特(标准)正交化:
设有向量组 { α 1 , α 2 , . . , α n } \{\alpha_1,\alpha_2,..,\alpha_n\} {α1,α2,..,αn},则正交化步骤如下:
β 1 = α 1 ⇒ β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 ⇒ β k = α k − ∑ i = 1 k − 1 ( α k , β i ) ( β i , β i ) β i \beta_1 = \alpha_1\Rightarrow\beta_2 = \alpha_2 - \cfrac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\Rightarrow\beta_k = \alpha_k-\sum\limits_{i=1}^{k-1}\cfrac{(\alpha_k,\beta_i)}{(\beta_i,\beta_i)}\beta_i β1=α1⇒β2=α2−(β1,β1)(α2,β1)β1⇒βk=αk−i=1∑k−1(βi,βi)(αk,βi)βi
则 { β 1 , β 2 , . . , β n } \{\beta_1,\beta_2,..,\beta_n\} {β1,β2,..,βn}是一个正交向量组,且等价于 { α 1 , α 2 , . . , α n } \{\alpha_1,\alpha_2,..,\alpha_n\} {α1,α2,..,αn}再将其标准化即可: β i ⇒ β i ∣ β i ∣ \beta_i \Rightarrow \cfrac{\beta_i}{|\beta_i|} βi⇒∣βi∣βi
-
-
正交向量组:
- 定义:若向量组所有向量两两正交且不含零向量,则称其为正交向量组,特殊地,若所有向量均是单位向量,则称其为标准正交向量组,也称法正交组;
- 性质:
- 一对正交的向量一定线性无关,则正交向量组必定线性无关;
- 欧几里得空间 R n R^n Rn中n个向量构成的(标准)正交向量组一定是 R n R^n Rn的一个基,称为**(标准)正交基**;
- 若向量 β β β可用正交向量组 α α α线性表示,且有表达式: β = ∑ k i a i β = ∑k_ia_i β=∑kiai,则 k i = ( β , a i ) ( a i , a i ) k_i = \cfrac{(β,a_i) }{ (a_i,a_i)} ki=(ai,ai)(β,ai) ;
-
相似矩阵:
- 定义:若存在可逆矩阵P,使得 B = P − 1 A P B = P^{-1}AP B=P−1AP,则称矩阵A、B互为相似矩阵,记作: A ~ B A~B A~B,同时称P为相似变换矩阵;
- 性质:
- 若 A ~ B A~B A~B,则: ∣ A ∣ = ∣ B ∣ , f ( A ) ~ f ( B ) , λ A = λ B |A|=|B|, f(A)~f(B),λ_A = λ_B ∣A∣=∣B∣,f(A)~f(B),λA=λB;
- 若 B = P − 1 A P B=P^{-1}AP B=P−1AP,则特征向量 x B = P − 1 x A x_B = P^{-1} x_A xB=P−1xA;
-
对角化:
-
定义:若存在可逆矩阵P,使得 d i a g ( a 1 , a 2 , . . . , a n ) = P − 1 A P diag(a_1,a_2,...,a_n) = P^{-1}AP diag(a1,a2,...,an)=P−1AP,则称A能对角化, 且此时 { a 1 , a 2 , . . . , a n } \{a_1,a_2,...,a_n\} {a1,a2,...,an} 即是A的n个特征根,P是A的特征列向量组构成的矩阵;
-
可对角化的判定定理:
定理 充分必要性 A有n个线性无关的特征向量 充要 A的每个k重根都有k个线性无关的特征向量 充要 A有n个不同的特征值 充分 A为实对称矩阵 充分 A = A − 1 A = A^{-1} A=A−1 充分
-
-
合同矩阵:
- 定义:若存在可逆矩阵 C C C,使得 C T A C = B C^{T}AC=B CTAC=B,则称A与B合同;特殊地,若存在可逆矩阵 C C C,使得 C T A C = d i a g ( a 1 , a 2 , . . . , a n ) C^TAC=diag(a_1,a_2,...,a_n) CTAC=diag(a1,a2,...,an),则称A能合同对角化;
- 两个实对称矩阵合同的判定定理:
- 充要条件:A、B有相同的正惯性系数和负惯性系数;
- 充分条件:A、B相似;
- 矩阵能合同对角化的充分条件:A是实对称矩阵;
-
二次型:
-
定义:n个变量的二次多项式 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)称为二次型;特殊地,若二次型只含平方项,则称其为标准型,若标准型的系数只在 1 , − 1 , 0 {1,-1,0} 1,−1,0中取,则称其为规范型 ;
-
性质:
- 每一个二次型与实对称矩阵一一对应,即 f ( x 1 , x 2 , . . . , x n ) = x T A x f(x_1,x_2,...,x_n) = x^TAx f(x1,x2,...,xn)=xTAx,其中A是由二次型的系数 a i j a_{ij} aij组成的实对称矩阵;
-
求二次型的标准型的方法:
-
设二次型 f ( x 1 , x 2 , . . . , x n ) = x T A x f(x_1,x_2,...,x_n)=x^TAx f(x1,x2,...,xn)=xTAx,求 A A A的特征根和特征向量,再将特征向量标准正交化组成正交矩阵 P P P,即得到 P T A P = Λ P^TAP = \Lambda PTAP=Λ;令 x = P y x=Py x=Py,则可将二次型 f ( x 1 , x 2 , . . . , x n ) f(x_1,x_2,...,x_n) f(x1,x2,...,xn)转化为标准型:
f ( x 1 , x 2 , . . . , x n ) = x T A x = x T ( P T Λ P ) x = ( P x ) T Λ ( P x ) = y T Λ y = g ( y 1 , y 2 , . . . , y n ) f(x_1,x_2,...,x_n) = x^T A x = x^T(P^T\Lambda P)x = (Px)^T\Lambda(Px) = y^T\Lambda y = g(y_1,y_2,...,y_n) f(x1,x2,...,xn)=xTAx=xT(PTΛP)x=(Px)TΛ(Px)=yTΛy=g(y1,y2,...,yn) -
拉格朗日配方法:即将平方项配完全平方公式,将二元一次项配平方差公式;
-
合同变换法: [ A E ] ⇒ [ d i a g ( λ ) P ] \left[\begin{matrix}A\\E\end{matrix}\right] \Rightarrow\left[\begin{matrix} diag(λ) \\ P\end{matrix}\right] [AE]⇒[diag(λ)P];
经过n次列变换,再经过相应n次行变换(称这种变换为成对初等行列变换)即可将 A A A化为 d i a g ( λ ) diag(λ) diag(λ) ,生成标准型: g ( y ) = y T d i a g ( λ ) y g(y) = y^Tdiag(λ) y g(y)=yTdiag(λ)y,而附带变换得到的 P P P即为其正交变换矩阵;
-
-
-
正定矩阵:
-
定义:设M是n阶实对称方阵,如果对任何非零向量z,都有 z T M z > 0 z^TMz> 0 zTMz>0,就称M为正定矩阵,其对应的二次型称为正定二次型;其他情况:若对任何非零向量z,都有 z T M z ≥ 0 z^TMz\ge 0 zTMz≥0,则称M为半正定矩阵;若若对任何非零向量z,都有 z T M z < 0 z^TMz< 0 zTMz<0,则称M为负定矩阵;若对任何非零向量z,都有 z T M z ≤ 0 z^TMz\le 0 zTMz≤0,则称M为半负定矩阵;类似可以定义其相应的二次型;
-
性质:
- 正定矩阵的行列式恒为正;
- 惯性定理:对于不同的正交变换 x = P y x=Py x=Py, x = Q z x=Qz x=Qz,标准型中正/负系数的个数保持不变,并称这个个数为二次型f的正/负惯性系数,正系数与负系数的差值叫做f的符号差;
- 赫尔维茨定理:
A为正定 ⇔ \Leftrightarrow ⇔A的各阶(顺序)主子式为正;
A为负定 ⇔ \Leftrightarrow ⇔A的奇数阶顺序主子式为负,偶数阶(顺序)主子式为正;
A为半正定 ⇔ \Leftrightarrow ⇔ A的各阶(顺序)主子式非负;
-
正定矩阵的判定定理:(以下命题的前提:A为实对称矩阵)
性质 充分必要性 与单位矩阵合同 充要 A的特征值全为正 充要 A的一切主子式为正 充要 A的一切顺序主子式为正 充要 存在实可逆矩阵 C C C,使 A = C T C A=C^{T}C A=CTC 充要 逆矩阵为正定矩阵 充要 A n A^n An为正定矩阵 充要 各个正定矩阵的和矩阵 充分
-
-
实对称矩阵:
- 实对称矩阵的特征值全部是实数;
- 实对称矩阵属于不同特征值的特征向量相互正交(属于同一特征值的特征向量之间一定线性无关但不一定正交,因此在求正交变换矩阵时,需要正交化);
- 实对称矩阵必能合同对角化,即存在正交矩阵 P P P,使得 Λ = P T A P \Lambda = P^TAP Λ=PTAP;
-
矩阵的秩的相关定理:
-
r ( A ) = r r(A)=r r(A)=r,意味着A存在至少一个非零r阶子式,且A的任意r+1阶子式为0,因此若 { r A ≥ k , ∣ A k ∣ ≠ 0 r A < k , ∣ A k ∣ = 0 \begin{cases}r_A\ge k,&|A_k|\ne0\\r_A<k,&|A_k|=0\end{cases} {rA≥k,rA<k,∣Ak∣=0∣Ak∣=0
-
r ( A ) = r ( A T ) = r ( A T A ) = r ( A A T ) r(A) = r(A^T) = r(A^TA) = r(AA^T) r(A)=r(AT)=r(ATA)=r(AAT); ⇒ \Rightarrow ⇒ A x = 0 Ax=0 Ax=0和 A T A x = 0 A^TAx=0 ATAx=0是同解方程组;
-
若A是n阶方阵,则 r ( A n ) = r ( A n + 1 ) r(A^n) = r(A^{n+1}) r(An)=r(An+1); ⇒ \Rightarrow ⇒ A n x = 0 A^nx=0 Anx=0和 A n + 1 x = 0 A^{n+1}x=0 An+1x=0是同解方程组;
-
0 ≤ r ( A m × n ) ≤ m i n { m , n } 0 \le r(A_{m\times n}) \le min \{m,n\} 0≤r(Am×n)≤min{m,n};
-
m a x { r ( A ) , r ( B ) } ≤ r ( A ∣ B ) ≤ r ( A ) + r ( B ) max\{r(A),r(B)\} \le r(A|B) \le r(A) + r(B) max{r(A),r(B)}≤r(A∣B)≤r(A)+r(B); ⇒ \Rightarrow ⇒ 若 A B = C AB=C AB=C,则 r ( A ∣ C ) = r ( A ∣ A B ) = r ( A ) r(A|C)=r(A|AB) = r(A) r(A∣C)=r(A∣AB)=r(A)
-
r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B) \le r(A)+r(B) r(A+B)≤r(A)+r(B);
-
分块矩阵: r ( A O O B ) = r ( A ) + r ( B ) r\left(\begin{matrix}A&O\\O&B\end{matrix} \right) = r(A)+r(B) r(AOOB)=r(A)+r(B);
-
西尔维斯特秩不等式: r ( A ) + r ( B ) − n ≤ r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(A)+r(B)-n \le r(AB) \le min\{r(A),r(B)\} r(A)+r(B)−n≤r(AB)≤min{r(A),r(B)};
⇒ \Rightarrow ⇒ 当 A B = O AB=O AB=O时, r ( A ) + r ( B ) ≤ n r(A)+r(B)\le n r(A)+r(B)≤n( B ⊂ X , A X = O B\subset X,AX=O B⊂X,AX=O,又 r ( X ) = n − r ( A ) , r ( B ) ≤ r ( X ) r(X) = n-r(A),r(B)\le r(X) r(X)=n−r(A),r(B)≤r(X));
-
弗罗贝尼乌斯秩不等式: r ( A B C ) ≥ r ( A B ) + r ( B C ) − r ( B ) r(ABC) \ge r(AB) + r(BC) - r(B) r(ABC)≥r(AB)+r(BC)−r(B) ;
-
伴随矩阵的秩: r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) ≤ n − 2 r(A^*) =\begin{cases} n ,& r(A) = n \\ 1, & r(A) = n-1 \\ 0, & r(A) \le n-2 \end{cases} r(A∗)=⎩⎪⎨⎪⎧n,1,0,r(A)=nr(A)=n−1r(A)≤n−2;
-
r ( α β T ) ≤ 1 r(\alpha\beta^T) \le 1 r(αβT)≤1;
-