离散数学笔记(一)

一、命题逻辑:

  • 命题的概念:

    命题是一个陈述事实的语句,有唯一的确定的真值,即不能既真又假


  • 命题变元/原子命题:

    一个原子命题可以用命题变元来表示,通常用小写字母来表示命题变元,如:p,q,r等;命题变元是一个变量,取值范围仅为:{T,F}, {1,0}


  • 命题表达式(递归定义):

    1)一个命题变元是命题表达式;
    2)若p是命题表达式,则 ¬ p \neg p ¬p也是命题表达式;
    3)若p和q是命题表达式,则 ( p ∧ q ) , ( p ∨ q ) , ( p → q ) , ( p ↔ q ) (p \wedge q),(p \vee q),(p \rightarrow q), (p \leftrightarrow q) (pq),(pq),(pq),(pq)也是命题表达式;
    4)只有有限次地应用上述规则形成的符号串才是命题表达式;


  • 逻辑运算符(优先级降序):

    否定 ¬ \neg ¬, 合取 ∧ \wedge , 析取 ∨ \vee , 蕴含 → \rightarrow (仅1->0为假),双蕴含 ↔ \leftrightarrow (仅取值相同为真)


  • 成真指派/成假指派:

    含n个变元的一个命题可以看做 B n → B B^n \rightarrow B BnB中的一个函数,其中B = {0,1}, B n = B × B × . . . × B B^n = B \times B \times ... \times B Bn=B×B×...×B.
    1)成真指派:对于所有变元的一种指派(赋值),使得命题为真;
    2)成假指派:对于所有变元的一种指派(赋值),使得命题为假;


  • 永真式(重言式)/永假式(矛盾式):

    1)永真式:无论其中出现的命题变元如何赋值,取值总是为真,比如 p ∨ ¬ p p \vee \neg p p¬p
    2)永假式:无论其中出现的命题变元如何赋值,取值总是为假,比如 p ∧ ¬ p p \wedge \neg p p¬p


  • 逻辑等价:

    两个命题表达式A和B等价,记作: A ≡ B A \equiv B AB,意为:
    对于任意变元指派,A和B的取值相同,即 A ↔ B A \leftrightarrow B AB为永真式;


  • 常见逻辑等价式:
定律名逻辑等价式
双重否定律 p ≡ ¬ ¬ p p \equiv \neg \neg p p¬¬p
幂等律 p ≡ p ∨ p ≡ p ∧ p p \equiv p \vee p \equiv p \wedge p ppppp
交换律 p ∨ q ≡ q ∨ p p \vee q \equiv q \vee p pqqp
p ∧ q ≡ q ∧ p p \wedge q \equiv q \wedge p pqqp
结合律 ( p ∨ q ) ∨ r ≡ p ∨ ( q ∨ r ) (p \vee q) \vee r \equiv p \vee (q \vee r) (pq)rp(qr)
( p ∧ q ) ∧ r ≡ p ∧ ( q ∧ r ) (p \wedge q) \wedge r \equiv p \wedge (q \wedge r) (pq)rp(qr)
分配律 p ∨ ( q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r ) p \vee (q \wedge r) \equiv (p \vee q)\wedge( p \vee r) p(qr)(pq)(pr)
p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r ) p \wedge (q \vee r) \equiv (p \wedge q)\vee( p \wedge r) p(qr)(pq)(pr)
德摩根律 ¬ ( p ∨ q ) ≡ ¬ p ∧ ¬ q \neg (p \vee q) \equiv \neg p \wedge \neg q ¬(pq)¬p¬q
¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q \neg (p \wedge q) \equiv \neg p \vee \neg q ¬(pq)¬p¬q
吸收律 p ∨ ( p ∧ q ) ≡ p p \vee (p \wedge q) \equiv p p(pq)p
p ∧ ( p ∨ q ) ≡ p p \wedge (p \vee q) \equiv p p(pq)p
支配律 p ∨ T ≡ T p \vee T \equiv T pTT
p ∧ F ≡ F p \wedge F \equiv F pFF
恒等律 p ∧ T ≡ p p \wedge T \equiv p pTp
p ∨ F ≡ p p \vee F \equiv p pFp
排中律 p ∨ ¬ p ≡ T p \vee \neg p \equiv T p¬pT
矛盾律 p ∧ ¬ p ≡ F p \wedge \neg p \equiv F p¬pF
归谬律 ( p → q ) ∧ ( p → ¬ q ) ≡ ¬ p (p \rightarrow q) \wedge (p \rightarrow \neg q) \equiv \neg p (pq)(p¬q)¬p
p ≡ ¬ p → F p \equiv \neg p \rightarrow F p¬pF
假言易位 p → q ≡ ¬ q → ¬ p p \rightarrow q \equiv \neg q \rightarrow \neg p pq¬q¬p
p ↔ q ≡ ¬ q ↔ ¬ p p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p pq¬q¬p
假言析取 p → q ≡ ¬ p ∨ q p \rightarrow q \equiv \neg p \vee q pq¬pq
蕴含互化 p ↔ q ≡ ( p → q ) ∧ ( q → p ) p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p) pq(pq)(qp)

  • 语义蕴含:

    命题表达式A语义蕴含B,记作: A ↦ B A \mapsto B AB,意为:
    对于A的任意成真指派,B均为真(反之不一定成立),即 A ↦ B A \mapsto B AB iff A → B A\rightarrow B AB为永真式;


  • 自然推理规则:
    (实质上为一组已经成为公理的语义蕴含式)
规则名推理式
假言推理 p , p → q ⇒ q p, p \rightarrow q \Rightarrow q p,pqq
取据式 ¬ q , p → q ⇒ ¬ p \neg q, p \rightarrow q \Rightarrow \neg p ¬q,pq¬p
假言三段论 p → q , q → r ⇒ p → r p \rightarrow q, q \rightarrow r \Rightarrow p \rightarrow r pq,qrpr
析取三段论 ¬ p , p ∨ q ⇒ q \neg p, p \vee q \Rightarrow q ¬p,pqq
附加律 p ⇒ p ∨ q p \Rightarrow p \vee q ppq
化简律 p ∧ q ⇒ p , p ∧ q ⇒ q p \wedge q \Rightarrow p, p \wedge q \Rightarrow q pqp,pqq
合取律 p , q ⇒ p ∧ q p,q \Rightarrow p \wedge q p,qpq
消解律 p ∨ q , ¬ p ∨ r ⇒ q ∨ r p \vee q, \neg p \vee r \Rightarrow q \vee r pq,¬prqr

  • 合取范式(CNF)/ 析取范式 (DNF):

    设命题公式A中出现的命题变元为 p 1 , p 2 , … p n p_1,p_2,…p_n p1,p2,pn
    1)以Qi表示 p i 或 ¬ p i p_i或\neg p_i pi¬pi,i=1,2,…n,称为文字

    2)称 Q 1 ∨ … ∨ Q k Q_1\vee…\vee Q_k Q1Qk p 1 , … , p n p_1,…,p_n p1pn的一个析取项 Q 1 ∧ … ∧ Q k Q_1\wedge…\wedge Q_k Q1Qk p 1 , … , p n p_1,…,p_n p1pn的一个合取项注意角标k和n不必相等,也不必连续从1到k,只要是[1,n]的一个子集即可);

    3)特别地,当任意 p i p_i pi的文字在析取项中出现且仅出现一次,则称这个析取项为最大项 => 易知最大项只有一种成假指派;当任意 p i p_i pi的文字在合取项中出现且仅出现一次,则称这个合取项为最小项 => 易知最小项只有一种成真指派;

    4)若干个互不相同的析取项的合取称为一个合取范式;若干个互不相同的合取项的析取称为一个析取范式;与命题公式A逻辑等价的合取范式/析取范式称为A的合取范式/析取范式(注意:任意命题公式都可转化为若干个合取范式/析取范式

    5)特别地,当A的合取范式的所有析取项都是最大项,则称该合取范式为A的主合取范式;当A的析取范式的所有合取项都是最小项,则称该合取范式为A的主析取范式注意:任意命题公式都可转化为唯一的主合取范式/主析取范式



二、谓词逻辑:

  • 谓词:

    谓词逻辑的结构可分解为个体词和谓词。 个体词是可以独立存在的事或物,常项通常用a,b,c等表示,变项通常用x,y,z等表示;谓词则是用来刻划个体词的性质的词,通常用P,Q等表示;而谓词逻辑即由P(x) , Q(x,y,z)等表示;


  • 量词:

    若P(x)是谓词,则 ∀ \forall x P(x) 表示对于所有的x, 有P(x), 称 ∀ \forall 全称量词
    若P(x)是谓词,则 ∃ \exist x P(x) 表示对于所有的x, 有P(x), 称 ∃ \exist 特称量词


  • 多量词的等价换序:

    ∀ x ∀ y P ( x , y ) ≡ ∀ y ∀ x P ( x , y ) \forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y) xyP(x,y)yxP(x,y)
    ∃ x ∃ y P ( x , y ) ≡ ∃ y ∃ x P ( x , y ) \exist x \exist y P(x,y) \equiv \exist y \exist x P(x,y) xyP(x,y)yxP(x,y)
    (注意多个量词一般不能随意交换顺序,比如: ∀ x ∃ y P ( x , y ) 与 ∃ y ∀ x P ( x , y ) \forall x \exist y P(x,y) 与 \exist y \forall x P(x,y) xyP(x,y)yxP(x,y)不一定等价,举例:令P(x,y) 表示“y > x”)


  • 谓词逻辑的推理规则:
规则名推理式
全称例示 ∀ x P ( x ) ⇒ P ( c ) 对 于 任 意 的 c \forall x P(x) \Rightarrow P(c)对于任意的c xP(x)P(c)c
全称生成 P ( c ) 对 于 任 意 的 c ⇒ ∀ x P ( x ) P(c)对于任意的c \Rightarrow \forall x P(x) P(c)cxP(x)
特称例示 ∃ x P ( x ) ⇒ P ( c ) 对 于 某 个 c \exist x P(x) \Rightarrow P(c)对于某个c xP(x)P(c)c
特称生成 P ( c ) 对 于 某 个 c ⇒ ∃ x P ( x ) P(c)对于某个c \Rightarrow \exist x P(x) P(c)cxP(x)


三、证明方法:

  • 直接证明:

    由已知定理和前提条件,多次运用推理规则进行证明

  • 反证法:

    原理为假言易位,即 p → q ≡ ¬ q → ¬ p p \rightarrow q \equiv \neg q \rightarrow \neg p pq¬q¬p

  • 归谬法:

    原理: q ≡ ¬ q → F q \equiv \neg q \rightarrow F q¬qF

  • 存在性证明:
    • 构造性证明:直接举出一个实例

    • 非构造性证明:设计一组条件,证明一定能在条件下找到一个实例

  • 任意性证伪:

    即否命题的存在性证明

  • 任意性证明:

    一般直接证明 (如数学归纳法

  • 存在性证伪:

    即否命题的任意性证明




  • 6
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
离散数学笔记 1. 集合 集合是离散数学的基础概念之一。一个集合是由一些元素组成的,这些元素可以是数、字母、符号、图形等等。 - 集合的表示方法 集合可以用大括号{}表示,元素之间用逗号隔开。例如,{1,2,3,4}表示一个由1、2、3、4四个元素组成的集合。 - 集合的基本运算 并集:表示集合A和集合B中所有元素的集合,用符号∪表示。例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。 交集:表示同时属于集合A和集合B的元素的集合,用符号∩表示。例如,A={1,2,3},B={3,4,5},则A∩B={3}。 差集:表示属于集合A但不属于集合B的元素的集合,用符号-表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 补集:表示集合A中不属于集合B的元素的集合,用符号A-B表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 2. 命题逻辑 命题逻辑是一种研究命题之间的逻辑关系和推理规律的数学分支。命题是指可以判断真假的陈述句。 - 命题的表示方法 命题可以用字母或符号表示。例如,P表示“今天是星期天”。 - 命题的逻辑运算 非运算:表示取反,用符号¬表示。例如,¬P表示“今天不是星期天”。 合取运算:表示“且”,用符号∧表示。例如,P∧Q表示“今天是星期天并且明天是星期一”。 析取运算:表示“或”,用符号∨表示。例如,P∨Q表示“今天是星期天或者明天是星期一”。 蕴含运算:表示“如果……那么”,用符号→表示。例如,P→Q表示“如果今天是星期天,那么明天是星期一”。 等价运算:表示两个命题具有相同的真值,用符号↔表示。例如,P↔Q表示“今天和明天都是星期天”。 3. 谓词逻辑 谓词逻辑是一种研究谓词之间的逻辑关系和推理规律的数学分支。谓词是指可以应用于一个或多个对象的属性或关系。 - 谓词的表示方法 谓词可以用字母或符号表示。例如,A(x)表示“x是一个人”。 - 谓词的逻辑运算 量词:表示谓词适用于某些对象或全部对象。有普遍量词∀和存在量词∃两种。例如,∀x A(x)表示“所有的x都是人”,∃x A(x)表示“存在一个x是人”。 连接词:表示谓词之间的逻辑关系。有合取词∧、析取词∨、蕴含词→、等价词↔等四种。例如,A(x)∧B(x)表示“x既是人又是男性”,A(x)∨B(x)表示“x是人或者x是男性”。 4. 图论 图论是一种研究图和图的性质的数学分支。图是由点和边组成的结构,点表示对象,边表示对象之间的关系。 - 图的基本概念 无向图:所有的边没有方向。 有向图:所有的边有方向。 简单图:没有自环和重边的图。 完全图:每个点都与其他点有边相连的图。 - 图的基本运算 路径:表示通过边相连的一系列点的序列。 回路:表示起点和终点相同的路径。 连通图:表示任意两个点之间都存在路径的图。 强连通图:表示任意两个点之间都存在有向路径的图。 生成树:表示包含所有点和最少边的树。 最短路径:表示两个点之间边权和最小的路径。 5. 组合数学 组合数学是一种研究离散结构之间的组合关系和计数方法的数学分支。 - 排列组合 排列:从n个不同元素中取出m个元素进行排列的方式数,用符号P(n,m)表示。 组合:从n个不同元素中取出m个元素进行组合的方式数,用符号C(n,m)表示。 - 二项式定理 二项式定理是组合数学中的一个重要公式,表示(a+b)^n的展开式中各项系数的规律。其公式为: (a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + … + C(n,n)b^n 其中C(n,m)表示从n个不同元素中取出m个元素进行组合的方式数。 - 错排问题 错排问题是组合数学中的一个经典问题,表示n个元素的排列中,恰好有m个元素排列正确的方式数。其公式为: D(n,m)=(n-m)(D(n-1,m-1)+D(n-2,m-1)) 其中D(n,m)表示n个元素的排列中,恰好有m个元素排列正确的方式数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值