统计学习方法笔记-EM算法的应用(对高斯混合模型进行参数估计 内含Python实现)

一 高斯混合模型

在这里插入图片描述

二 使用EM算法对高斯混合模型进行参数估计

假设观测数据y1,y2,…yn 由高斯混合模型生成

在这里插入图片描述
因为高斯混合模型是由许多高斯模型组合而成的,我们无法确定某一个观测数据yj 具体是由哪一个高斯模型生成的,这也就是我们这个概率模型的一个隐变量。它的定义如下:

在这里插入图片描述第一步 我们先得出这个问题的完全数据的对数似然函数
在这里插入图片描述
第二步 根据EM算法 我们要计算Q函数
在这里插入图片描述

在这里插入图片描述
第三步 根据EM算法 要求出极大化Q函数的参数

即求
在这里插入图片描述

在这里插入图片描述在这里插入图片描述 下求偏导数并令其为 0 得到的。

在这里插入图片描述

下面给出高斯混合模型参数估计的EM算法流程
在这里插入图片描述
在这里插入图片描述

三 代码实现

class Gaussian_EM:
    def __init__(self,Train,K,M):
        # Train 表示观测变量
        self.Train = Train
        # K表示高斯混合模型有多少分量
        self.K=K
        #a 表示高斯混合模型中每一个模型前面的系数
        self.a=[0.4,0.5,0.1]
        #avg,var=self.init_e_and_var()
        # var 表示高斯混合模型中每一个模型的方差
        self.var=[1000,500,100]
        #u 表示高斯混合模型中每一个模型的期望
        self.u =[16,28,45]
        #迭代次数
        self.M=M
        #第j 个观测来自第k个分模型的概率
        self.gama=None


    def init_e_and_var(self):
        #初始化期望方差
        sum=0
        for i in range(self.Train.shape[0]):
            sum+=self.Train[i]
抱歉,我并不会Python,但我可以提供一些思路供你参考。 1. 实现条件概率表:可以使用Python中的字典或者numpy中的数组来表示条件概率表。对于离散变量,可以用字典来表示;对于连续变量,可以用numpy数组来表示。例如: ``` # 离散变量的条件概率表 cpt = {'A': {'0': 0.6, '1': 0.4}, 'B': {'0': {'A=0': 0.7, 'A=1': 0.3}, '1': {'A=0': 0.2, 'A=1': 0.8}}} # 连续变量的条件概率表 import numpy as np mean = np.array([0, 1]) cov = np.array([[1, 0.5], [0.5, 1]]) ``` 2. 实现朴素贝叶斯分类器:可以使用Python中的类来实现朴素贝叶斯分类器。具体来说,可以定义一个`NaiveBayes`类,其中包含训练和预测两个方法。在训练方法中,需要计算每个类别的先验概率和每个特征在每个类别下的条件概率,可以使用上述条件概率表来实现。在预测方法中,需要根据贝叶斯公式计算每个类别的后验概率,并返回概率最大的类别。例如: ``` class NaiveBayes: def __init__(self): self.prior = None self.condprob = None def train(self, X, y): n_samples, n_features = X.shape self.classes = np.unique(y) n_classes = len(self.classes) # 计算先验概率 self.prior = np.zeros(n_classes) for i, c in enumerate(self.classes): self.prior[i] = np.sum(y == c) / n_samples # 计算条件概率 self.condprob = {} for i, c in enumerate(self.classes): self.condprob[c] = {} for j in range(n_features): feature_values = np.unique(X[:, j]) self.condprob[c][j] = {} for value in feature_values: self.condprob[c][j][value] = np.sum((X[:, j] == value) & (y == c)) / np.sum(y == c) def predict(self, X): n_samples, n_features = X.shape y_pred = np.zeros(n_samples) for i in range(n_samples): posteriors = np.zeros(len(self.classes)) for j, c in enumerate(self.classes): # 计算后验概率 posterior = self.prior[j] for k in range(n_features): posterior *= self.condprob[c][k][X[i, k]] posteriors[j] = posterior # 返回概率最大的类别 y_pred[i] = self.classes[np.argmax(posteriors)] return y_pred ``` 3. 实现高斯混合模型:可以使用Python中的类来实现高斯混合模型。具体来说,可以定义一个`GaussianMixtureModel`类,其中包含训练和预测两个方法。在训练方法中,需要使用EM算法来估计模型参数,包括每个混合成分的权重、均值和协方差矩阵。在预测方法中,需要根据高斯混合模型的概率密度函数计算样本的概率,并返回概率最大的类别。例如: ``` class GaussianMixtureModel: def __init__(self, n_components): self.n_components = n_components self.weights = None self.means = None self.covariances = None def train(self, X, max_iters=100): n_samples, n_features = X.shape # 初始化模型参数 self.weights = np.ones(self.n_components) / self.n_components self.means = X[np.random.choice(n_samples, self.n_components, replace=False)] self.covariances = np.array([np.eye(n_features) for i in range(self.n_components)]) for i in range(max_iters): # E步:计算后验概率 posteriors = np.zeros((n_samples, self.n_components)) for j in range(self.n_components): posteriors[:, j] = self.weights[j] * multivariate_normal.pdf(X, self.means[j], self.covariances[j]) posteriors /= np.sum(posteriors, axis=1, keepdims=True) # M步:更新模型参数 self.weights = np.mean(posteriors, axis=0) self.means = np.zeros((self.n_components, n_features)) self.covariances = np.zeros((self.n_components, n_features, n_features)) for j in range(self.n_components): self.means[j] = np.sum(posteriors[:, j].reshape(-1, 1) * X, axis=0) / np.sum(posteriors[:, j]) diff = X - self.means[j] self.covariances[j] = np.dot((posterior[:, j].reshape(-1, 1) * diff).T, diff) / np.sum(posteriors[:, j]) def predict(self, X): n_samples, n_features = X.shape y_pred = np.zeros(n_samples) for i in range(n_samples): # 计算样本的概率 prob = 0 for j in range(self.n_components): prob += self.weights[j] * multivariate_normal.pdf(X[i], self.means[j], self.covariances[j]) # 返回概率最大的类别 y_pred[i] = np.argmax(prob) return y_pred ``` 希望这些思路能够对你的学习有所帮助。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值