模拟频率、模拟角频率、数字频率、采样频率、信号原始频率

模拟频率与数字频率

名称单位符号意义
模拟频率Hz (1/s)f单位时间内信号的周期个数
模拟角频率rad/sΩ单位时间内信号弧度的大小
数字频率radw相邻采样点间隔的弧度大小
采样频率Hzfs单位时间内采样点的个数

五者之间的关系和转换

1.模拟频率与模拟角频率:
Ω = 2 π f   \Omega = 2\pi f\, Ω=2πf
假定有一个正弦信号x(t),其模拟频率f=100Hz,幅度为A,初始相位为0,则这个信号用公式可以表示为:
x ( t ) = A sin ⁡ ( 2 π ∗ 100 t ) x(t) = A\sin (2\pi *100t) x(t)=Asin(2π100t)
它的周期:
T = 1 f = 0.01 ( s ) T = \frac{1}{f} = 0.01(s) T=f1=0.01(s)
模拟角频率:
Ω = 2 π f = 200 π ( r a d / s ) \Omega = 2\pi f = 200\pi(rad/s) Ω=2πf=200π(rad/s)
2.模拟频率与数字频率
数字信号是由模拟信号采样得到的。在数字信号处理中,数字频率w是模拟角频率Ω对采样频率fs的归一化。所以数字频率表达式:
w = 2 π f f s w = 2\pi \frac{f}{{fs}} w=2πfsf
根据奈奎斯特定理fs>=2f,所以w的取值范围为[0, pi]。

用采样频率fs=500Hz对模拟信号进行采样,第n个采样点对应的时刻t:
t = n T s = n 1 f s t = n{T_s} = n\frac{1}{{fs}} t=nTs=nfs1
得到的数字信号:
x [ n ] = A sin ⁡ ( 2 π ∗ 100 ∗ n 1 500 ) = A sin ⁡ ( 0.4 π n ) x[n] = A\sin (2\pi *100*n\frac{1}{{500}}) = A\sin (0.4\pi n) x[n]=Asin(2π100n5001)=Asin(0.4πn)
此时
w = 0.4 π ( r a d ) w = 0.4\pi (rad) w=0.4π(rad)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值