模拟频率与数字频率
名称 | 单位 | 符号 | 意义 |
---|---|---|---|
模拟频率 | Hz (1/s) | f | 单位时间内信号的周期个数 |
模拟角频率 | rad/s | Ω | 单位时间内信号弧度的大小 |
数字频率 | rad | w | 相邻采样点间隔的弧度大小 |
采样频率 | Hz | fs | 单位时间内采样点的个数 |
五者之间的关系和转换
1.模拟频率与模拟角频率:
Ω
=
2
π
f
\Omega = 2\pi f\,
Ω=2πf
假定有一个正弦信号x(t),其模拟频率f=100Hz,幅度为A,初始相位为0,则这个信号用公式可以表示为:
x
(
t
)
=
A
sin
(
2
π
∗
100
t
)
x(t) = A\sin (2\pi *100t)
x(t)=Asin(2π∗100t)
它的周期:
T
=
1
f
=
0.01
(
s
)
T = \frac{1}{f} = 0.01(s)
T=f1=0.01(s)
模拟角频率:
Ω
=
2
π
f
=
200
π
(
r
a
d
/
s
)
\Omega = 2\pi f = 200\pi(rad/s)
Ω=2πf=200π(rad/s)
2.模拟频率与数字频率
数字信号是由模拟信号采样得到的。在数字信号处理中,数字频率w是模拟角频率Ω对采样频率fs的归一化。所以数字频率表达式:
w
=
2
π
f
f
s
w = 2\pi \frac{f}{{fs}}
w=2πfsf
根据奈奎斯特定理fs>=2f,所以w的取值范围为[0, pi]。
用采样频率fs=500Hz对模拟信号进行采样,第n个采样点对应的时刻t:
t
=
n
T
s
=
n
1
f
s
t = n{T_s} = n\frac{1}{{fs}}
t=nTs=nfs1
得到的数字信号:
x
[
n
]
=
A
sin
(
2
π
∗
100
∗
n
1
500
)
=
A
sin
(
0.4
π
n
)
x[n] = A\sin (2\pi *100*n\frac{1}{{500}}) = A\sin (0.4\pi n)
x[n]=Asin(2π∗100∗n5001)=Asin(0.4πn)
此时
w
=
0.4
π
(
r
a
d
)
w = 0.4\pi (rad)
w=0.4π(rad)