本质:斐波那契数列[0,1,1,2,3,5,8,13,…]
当n=0,步数res=1
当n=1,res=1
当n=2,res=2
当n > 2时,最后一跳可以跳一下,即从第n-1台阶上跳上来, 也可以跳两下,即从第n-2台阶上跳上来。
因此第n阶的跳数有f(n)=f(n-1)+f(n-2)
int numWays(int n){
long long int res=0;
long long int fib[n+3];
if(n==0 || n==1)
return 1;
fib[0]=0;
fib[1]=1;
int i;
for(i=2;i<n+2;i++)
{
fib[i]=fib[i-1]%1000000007+fib[i-2]%1000000007;
}
res=fib[i-1];
return res%1000000007;
}