剑指 Offer 10- II. 青蛙跳台阶问题

本文解析了一只青蛙跳上n级台阶的不同跳法问题,展示了斐波那契数列的应用,并提供了循环和递归两种代码实现。重点在于理解递推公式f(n) = f(n-2) + f(n-1),以及如何用编程解决此类动态规划问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

二、示例

示例 1:

输入:n = 2
输出:2
示例 2:

输入:n = 7
输出:21
示例 3:

输入:n = 0
输出:1

0 <= n <= 100

三、题目分析 & 解题思路

根据题目描述 可做以下规律推导
当 为 n 阶台阶
n = 1
跳法 :1 种 ( 1)
n = 2
跳法 : 2种 ( 1 + 1 或 2)
n = 3
跳法:3种 ( 1+ 1 + 1 或 1 + 2 或 2 +1)
n = 4
跳法:5 种( 1+1+1+1 或 1+2+1 或 2+1+1 或 1+1+2 或 2+2)
n = 5
跳法:8种 (1+1+1+1+1 或 1+2+1+1 或 1+1+2+1 或 1+1+1+2 或 2+1+1+1 或 2+2+1或2+1+2 或 1+2+2)

大家可以发现 随着 n 的逐渐加1 青蛙的跳法 也是 逐渐增加 且 增加得 具体跳法 有着以下这样得规律
在这里插入图片描述
通过规律可以发现
n = 4 跳法 其实就是 n = 3 的每种跳法的基础上 加 1 再加上 n = 2 的每种跳法的基础上 加 2

由此 我们可以 推导出 公式

n 个台阶的跳法为 f(n) = f(n-2) + f(n-1)

看到这里其实不难发现 n 个台阶的 跳法 其实就是 斐波那契数列
同样可以使用递归的方法,也可以使用循环相加的方法计算出 n 个台阶的 跳法个数

代码实现

循环相加方法

class Solution {
public:
    int numWays(int n) {
        int first = 1;
        int second = 1;
        int third = 0;
        if(n < 2)
        {
            return 1;
        }
        else
        {
            for(int i = 2; i <= n; i++)
            {
                third = (first + second) % 1000000007;
                first = second;
                second = third;
            }
            return third;
        }
    }
};

在这里插入图片描述

迭代

class Solution {
public:
    int numWays(int n) {
        if(n < 2)
        {
            return 1;
        }
        else
        {
            return numWays(n-1) % 1000000007  + numWays(n-2) % 1000000007;
        }
    }
};

但是由于迭代的时间复杂度过高 会超出时间限制
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值