机器学习
安徒生的旧时光
要么往前走,要么不回头
展开
-
Pytorch、theano+cuda配置
Pytorch与theano的cuda 配置: 一、pytorch 无需安装cuda与cudnn,直接使用官网命令“conda install pytorch torchvision cudatoolkit==10.2”(版本自行选择)即可 二、theano cuda加速需要先安装cuda与cudnn(9.0已成功,切记使用.run文件安装,跳过nvidia显卡驱动安装!!),完成安装后再安装theano(conda install theano,直接安装最新版本1.0.5),并且在pycharm的term原创 2020-09-16 14:57:21 · 402 阅读 · 0 评论 -
机器学习入门笔记(一)
机器学习笔记机器学习基本概念一元线性回归梯度下降法 机器学习基本概念 机器学习与数据挖掘息息相关,可用人脑模拟机器学习的过程。人类通过眼睛捕捉外界信息在大脑中形成图像信息,在大脑加工后再具体反映至具体动作。而当今的深度学习是早期的神经网络,类比人脑处理过程,其简单流程可分为:输入层 —> 隐藏层 —> 输出层 。 机器学习可大致分为监督学习与无监督学习两大类: 监督学习: 一般...原创 2019-06-05 22:34:53 · 271 阅读 · 0 评论 -
机器学习入门笔记(四)
LASSO代价函数 在常规的代价函数中,参数一般只会趋于0而不会直接取0,因此将代价函数进行修改,即L1正则化。 J(θ)=12m[∑i=1m(hθ(xi)−yi)2+λ∑j=1n∣θj∣]J(\theta)=\frac{1}{2m}[\sum_{i=1}^{m}(h_\theta(x^i)-y^i)^2+\lambda\sum_{j=1}^{n}|\theta_j|]J(θ)=2m1[∑i=1...原创 2019-06-12 22:33:04 · 146 阅读 · 0 评论 -
机器学习入门笔记(二)
多元线性回归 多元线性回归与一元线性回归类似,只是特征值由一个变为了两个及以上。 表达式:hθ(xi)=θ0+θ1x+θ2x2+...+θnxnh_\theta(x_i)=\theta_0+\theta_1x+\theta_2x_2+...+\theta_nx_nhθ(xi)=θ0+θ1x+θ2x2+...+θnxn 因此可用向量写成:hθ(xi)=θiXiTh_\theta(x_...原创 2019-06-07 19:50:14 · 178 阅读 · 0 评论 -
机器学习入门笔记(三)
特征缩放 如下图的数据情况 图中的房子价格与房间数量大小相差较大,因此在回归预测时所得的模型可能不够准确。 因此引入特征缩放,常用的特征缩放方法由两种: (一)数据归一化:把数据的取值范围处理为0~1或者 -1~1 任意数据转化为0~1之间:newValue=(oldValue-min)/(max-min) 任意数据转化为-1~1之间:newValue=[(oldValue-min)/(max-...原创 2019-06-08 22:58:38 · 123 阅读 · 0 评论