机器学习入门笔记(四)

LASSO代价函数

在常规的代价函数中,参数一般只会趋于0而不会直接取0,因此将代价函数进行修改,即L1正则化。

J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x i ) − y i ) 2 + λ ∑ j = 1 n ∣ θ j ∣ ] J(\theta)=\frac{1}{2m}[\sum_{i=1}^{m}(h_\theta(x^i)-y^i)^2+\lambda\sum_{j=1}^{n}|\theta_j|] J(θ)=2m1[i=1m(hθ(xi)yi)2+λj=1nθj]

该方法用于含多重线性相关的数据,即参数最终有直接为0的情况。

弹性网代价函数

J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x i ) − y i ) 2 + λ ∑ j = 1 n ∣ θ j ∣ q ] J(\theta)=\frac{1}{2m}[\sum_{i=1}^{m}(h_\theta(x^i)-y^i)^2+\lambda\sum_{j=1}^{n}|\theta_j|^q] J(θ)=2m1[i=1m(hθ(xi)yi)2+λj=1nθjq]

逻辑回归

逻辑回归常用于分类问题,较为适用于二分类问题。
逻辑回归函数: h θ ( x ) = g ( θ T x ) h_\theta(x)=g(\theta^Tx) hθ(x)=g(θTx) (矩阵形式)
g(x)为sigmoid函数 ,函数表达式为: g ( x ) = 1 1 + e − x g(x)=\frac{1}{1+e^{-x}} g(x)=1+ex1
其函数图如下:
在这里插入图片描述
因此代入上式可知 h θ ( x ) = 1 1 + e − θ T X h_\theta(x)=\frac{1}{1+e^{-\theta^T X}} hθ(x)=1+eθTX1
由sigmoid函数可知分界线为0.5,对于 θ T X \theta^T X θTX的界限为0

逻辑回归代价函数

c o s t ( h θ ( x ) , y ) = { − l o g ( h θ ( x ) ) i f y = 1 − l o g ( 1 − h θ ( x ) ) i f y = 0 cost(h_\theta (x),y)= \begin{cases} -log(h_\theta(x))& if \quad y=1\\ -log(1-h_\theta(x))& if \quad y=0\\ \end{cases} cost(hθ(x),y)={log(hθ(x))log(1hθ(x))ify=1ify=0
其中 h θ ( x ) h_\theta(x) hθ(x)为预测值,y为真实值。以二分类而言,标签一般分为‘0’和‘1’。
因此当标签为‘1’,预测值为‘0’时,代价函数值为 ∞ \infty ,也就意味着偏差无穷大,反之相同。

将二者合成一般情况: c o s t ( h θ ( x ) , y ) = − y l o g ( h θ ( x ) ) − ( 1 − y ) l o g ( 1 − h θ ( x ) ) cost(h_\theta(x),y)=-ylog(h_\theta(x))-(1-y)log(1-h_\theta(x)) cost(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))

经过求导可知,代价函数的梯度为:

g r a d = 1 m ∑ i = 1 m x ( h θ ( x ) − y ) grad=\frac{1}{m}\sum_{i=1}^{m}x(h_\theta(x)-y) grad=m1i=1mx(hθ(x)y) (写成矩阵形式时X等部分矩阵可能要转置)

springboot052基于Springboot+Vue旅游管理系统毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值