二叉树leetcode2

判断一棵树是否为搜索二叉树(左子树的值都小于右子树的值)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

```bash
```bash
//判断一棵树是否为搜索二叉树

    public static int preValue=Integer.MIN_VALUE;
    public  static  boolean checkBST1(TreeNode root){
        if (root==null){
            return true;
        }
        boolean isLeftBst = checkBST1(root.left);
        if (!isLeftBst){
            return  false;
        }
        if (root.val<=preValue){
            return  false;
        }
        else {
            preValue=root.val;
        }
        return checkBST1(root.right);
    }

    public  static  boolean checkBST2(TreeNode root){
        List<TreeNode> list = new ArrayList<>();
        process2(root,list);

        boolean flag=true;
//        TreeNode treeNode = list.get(0);
//        System.out.println(treeNode.val);
        for (int i = 0; i < list.size()-2; i++) {
            if (list.get(i).val>list.get(i+1).val){
                return  false;
            }

        }

        return   flag;

    }
    public  static void  process2(TreeNode root,List<TreeNode> inOrderList){
        if (root==null){
            return;
        }
        process2(root.left,inOrderList);
        inOrderList.add(root);
        process2(root.right,inOrderList);
    }

判断是否为完全二叉树
在这里插入图片描述

判断一棵树是否为满二叉树
在这里插入图片描述
判断是否为平衡二叉树:
在这里插入图片描述

//判断是否为平衡二叉树

    public  static  boolean isBalanced(TreeNode root){
        ReturnType process = process(root);
        return process.isBalanced;
    }
    //定义返回值类型
    static  class ReturnType{
        public   boolean isBalanced;
        public  int height;

        public ReturnType(boolean isB,int hei){
            isBalanced=isB;
            height=hei;
        }
    }
    public  static  ReturnType  process(TreeNode  x){
        if (x==null){
            return new ReturnType(true,0);
        }
        ReturnType leftData = process(x.left);
        ReturnType rightData = process(x.right);
       int  height=Math.max(leftData.height,rightData.height)+ 1;
         Boolean isBalanced =  leftData.isBalanced&&rightData.isBalanced&&Math.abs(leftData.height- rightData.height)<2;
        return  new ReturnType(isBalanced,height);
    }

在这里插入图片描述
二叉树的递归套路
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
递归的返回值应该是一样的 结构要一样 所以确定返回三个值
在这里插入图片描述

![在这里插入图片描述](https://img-blog.csdnimg.cn/b167862e912d422a952467eb05abf09d.png在这里插入图片描述

//  用递归的套路解决判断是否为搜索二叉树
    //首先明确思路 返回值类型   需要判断左子树是否为搜索二叉树 然后还要判断右子树是否为二叉树 
    // 同时还要满足左子树的最大值要小于右子树的最小值

    static   class  ReturnData{
        public  boolean isBST;
        public int max;
        public int min;
        public  ReturnData(boolean isBST,int max,int min){
            this.isBST=isBST;
            this.max=max;
            this.min=min;
        }
    }
    public static ReturnData process1(TreeNode  x){
        if (x==null){
//            return  new ReturnData(true,0,0);
            return null;
        }
        ReturnData leftData = process1(x.left);
        ReturnData rightData = process1(x.right);
        int min=x.val;
        int max=x.val;
        if (leftData!=null){
            min=Math.max(min,leftData.min);
            max= Math.max(max,leftData.max);
        }
        if (rightData!=null){
            min=Math.max(min,rightData.min);
            max= Math.max(max,rightData.max);
        }
        boolean isBST=true;
        //左树不为空 同时左边不是搜索二叉树了或者左边的最大值大于x的值
        if (leftData!=null&&(!leftData.isBST||leftData.max>=x.val)){
            isBST=false;
        }
        //右树不为空 同时右边不是搜索二叉树了或者右边的最小值小于x的值
        if (rightData!=null&&(!rightData.isBST||x.val>= rightData.max)) {
            isBST=false;
        }
        return  new ReturnData(isBST,min,max);
        //xinde
    }
    public  static  boolean checkBST3(TreeNode root){
      return process1(root).isBST;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值