题目描述
给你一个字符串 s
,找到 s
中最长的回文子串。
如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。
示例 1:
输入: s = “babad”
输出: “bab”
解释: “aba” 同样是符合题意的答案。
示例 2:
输入: s = “cbbd”
输出: “bb”
提示:
- 1 <= s.length <= 1000
- s 仅由数字和英文字母组成
代码及注释
func longestPalindrome(s string) string {
n := len(s)
// 创建一个二维数组 dp,其中 dp[i][j] 表示从字符串的第 i 个字符到第 j 个字符是否为回文串
dp := make([][]bool, n)
for i := range dp {
dp[i] = make([]bool, n)
}
res := ""
// l 表示回文串的长度,从 0 开始逐渐增加
for l := 0; l < n; l++ {
// i 表示子串的起始位置
for i := 0; i < n-l; i++ {
j := i + l // j 表示子串的结束位置
if l == 0 {
// 子串长度为 1 时,一定是回文串
dp[i][j] = true
} else if l == 1 {
// 子串长度为 2 时,判断两个字符是否相等
dp[i][j] = s[i] == s[j]
} else {
// 子串长度大于 2 时,判断首尾字符是否相等,并检查去掉首尾字符后的子串是否为回文串
dp[i][j] = s[i] == s[j] && dp[i+1][j-1]
}
// 如果当前子串是回文串并且长度大于当前最长回文串的长度,则更新最长回文串
if dp[i][j] && l+1 > len(res) {
res = s[i : j+1]
}
}
}
return res
}
代码解释
这里使用动态规划的方法来解决最长回文子串的问题,是因为这个问题具有重叠子问题和最优子结构的特点。
-
重叠子问题:
- 在寻找最长回文子串的过程中,我们可能需要多次判断子串是否为回文。例如,为了判断
dp[i][j]
是否为回文,我们可能需要先判断dp[i+1][j-1]
是否为回文。 - 动态规划通过存储中间结果,避免了重复计算,提高了效率。
- 在寻找最长回文子串的过程中,我们可能需要多次判断子串是否为回文。例如,为了判断
-
最优子结构:
- 如果一个字符串的首尾字符相等,并且去掉首尾字符后的子串也是回文,那么整个字符串就是回文。
- 这种“问题的最优解包含子问题的最优解”特性使得动态规划是解决这个问题的合适方法。
代码解释:
-
初始化二维数组:
n := len(s) dp := make([][]bool, n) for i := range dp { dp[i] = make([]bool, n) }
- 创建一个二维数组
dp
,其中dp[i][j]
表示从字符串的第i
个字符到第j
个字符是否为回文串。
- 创建一个二维数组
-
动态规划计算最长回文子串:
for l := 0; l < n; l++ { for i := 0; i < n-l; i++ { j := i + l if l == 0 { dp[i][j] = true } else if l == 1 { dp[i][j] = s[i] == s[j] } else { dp[i][j] = s[i] == s[j] && dp[i+1][j-1] } if dp[i][j] && l+1 > len(res) { res = s[i : j+1] } } }
- 动态规划计算最长回文子串的长度。
l
表示当前计算的子串长度,从 0 开始逐渐增加。i
表示当前子串的起始位置,j
表示当前子串的结束位置。- 对于每个
i
和j
,我们判断当前子串是否为回文,并更新最长回文子串res
。
-
返回结果:
return res
- 返回最长回文子串
res
。
- 返回最长回文子串
这个动态规划的解法时间复杂度为 O(n2),空间复杂度为 O(n2)。