LeetCode-热题100:5. 最长回文子串

题目描述

给你一个字符串 s,找到 s 中最长的回文子串

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入: s = “babad”
输出: “bab”
解释: “aba” 同样是符合题意的答案。

示例 2:

输入: s = “cbbd”
输出: “bb”

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

代码及注释

func longestPalindrome(s string) string {
    n := len(s)
    // 创建一个二维数组 dp,其中 dp[i][j] 表示从字符串的第 i 个字符到第 j 个字符是否为回文串
    dp := make([][]bool, n)
    for i := range dp {
        dp[i] = make([]bool, n)
    }

    res := ""
    // l 表示回文串的长度,从 0 开始逐渐增加
    for l := 0; l < n; l++ {
        // i 表示子串的起始位置
        for i := 0; i < n-l; i++ {
            j := i + l // j 表示子串的结束位置
            if l == 0 {
                // 子串长度为 1 时,一定是回文串
                dp[i][j] = true
            } else if l == 1 {
                // 子串长度为 2 时,判断两个字符是否相等
                dp[i][j] = s[i] == s[j]
            } else {
                // 子串长度大于 2 时,判断首尾字符是否相等,并检查去掉首尾字符后的子串是否为回文串
                dp[i][j] = s[i] == s[j] && dp[i+1][j-1]
            }
            // 如果当前子串是回文串并且长度大于当前最长回文串的长度,则更新最长回文串
            if dp[i][j] && l+1 > len(res) {
                res = s[i : j+1]
            }
        }
    }
    return res
}

代码解释

这里使用动态规划的方法来解决最长回文子串的问题,是因为这个问题具有重叠子问题和最优子结构的特点。

  1. 重叠子问题:

    • 在寻找最长回文子串的过程中,我们可能需要多次判断子串是否为回文。例如,为了判断 dp[i][j] 是否为回文,我们可能需要先判断 dp[i+1][j-1] 是否为回文。
    • 动态规划通过存储中间结果,避免了重复计算,提高了效率。
  2. 最优子结构:

    • 如果一个字符串的首尾字符相等,并且去掉首尾字符后的子串也是回文,那么整个字符串就是回文。
    • 这种“问题的最优解包含子问题的最优解”特性使得动态规划是解决这个问题的合适方法。

代码解释:

  1. 初始化二维数组:

    n := len(s)
    dp := make([][]bool, n)
    for i := range dp {
        dp[i] = make([]bool, n)
    }
    
    • 创建一个二维数组 dp,其中 dp[i][j] 表示从字符串的第 i 个字符到第 j 个字符是否为回文串。
  2. 动态规划计算最长回文子串:

    for l := 0; l < n; l++ {
        for i := 0; i < n-l; i++ {
            j := i + l
            if l == 0 {
                dp[i][j] = true
            } else if l == 1 {
                dp[i][j] = s[i] == s[j]
            } else {
                dp[i][j] = s[i] == s[j] && dp[i+1][j-1]
            }
            if dp[i][j] && l+1 > len(res) {
                res = s[i : j+1]
            }
        }
    }
    
    • 动态规划计算最长回文子串的长度。
    • l 表示当前计算的子串长度,从 0 开始逐渐增加。
    • i 表示当前子串的起始位置,j 表示当前子串的结束位置。
    • 对于每个 ij,我们判断当前子串是否为回文,并更新最长回文子串 res
  3. 返回结果:

    return res
    
    • 返回最长回文子串 res

这个动态规划的解法时间复杂度为 O(n2),空间复杂度为 O(n2)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值