动态规划问题之01背包和完全背包的解答(含详细java代码)

1、01背包问题

1.1 工作简介

简介:
在01背包问题中,我参考了一个博主的教程,并修复了该博主的bug。博主写的十分详细(链接在下面已经贴出),十分感谢他的思路。
基于01背包的思路,我自己完成完全背包问题的java代码实现,并给出了最优价值矩阵和最优物品搭配个数,希望能帮助到还在动态规
划问题找不到门路的朋友。

1.2 01背包问题

1.参考链接:

01背包问题

2.代码实现

//01背包问题,动态规划
//每个动态规划都从一个网格开始,网格的各行为商品,各列为不同容量(1~4磅)的背包
//假设你是小偷,背着只能装下四磅重东西的背包,你可以选择1磅1000美元的iphone,2磅2500美元的电吉他,3磅4500美元的音响,4磅6000美元的笔记本电脑
public class Backpack_01 {
    int n; //描述物品个数
    int c;//描述物品容量
    int[] value;//描述物品价格
    int[] weight;//描述物品重量,磅为单位
	public Backpack_01() {
		// 初始赋值操作
		//value = new int[] {1500,2500,2000,1000};
		//weight = new int[] {2,4,3,1};
		value = new int[] {1000,2500,4500,6000};
		weight = new int[] {1,2,3,4};
		c=4;
		n=4;//这里面n的值要比c要小或者等于它,因为01背包都只有一件物品,至少为1磅重!
	}
    public void solve() {
    	//构造最优解的网格:4行4列
	    int [][] maxValue = new int[n][c];//java会默认初始化int型数组为0
	    for(int i=0;i<n;i++) {
	    	 for(int j=1;j<=c;j++) {//描述当前能放下的重量
	 	    	if(i==0) {
	 	    		maxValue[i][j-1]=(weight[i]<=j?value[i]:0);//要初始化第一行,因为后面i要-1;如果当前的背包容量,能容纳当前行的物品重量,则为该物品的价值,反之为0
	 	    	}else {
	 	    		int topValue = maxValue[i-1][j-1];//同一列上一个网格的值,代表在这个容量下面最优的总价值
	 	    		int thisValue = (weight[i]<=j?
	 	    				(j-weight[i]>0?value[i]+maxValue[i-1][j-weight[i]-1]:value[i])
	 	    				:topValue);//如果当前的物品的重量大于当前的背包容量,则放不下,那么应该为topValue;反之,判断是否小于或者大于当前的容量
	 	    		//如果等于取当前的物品的价值,反之取重量之差的最优价值的物品并与当前价值相加,下一步要进行判断
	 	    		maxValue[i][j-1]=(topValue>thisValue?topValue:thisValue);//更新当前的值
	 	    	}
	 	    }
	    }
	    for(int i=0;i<n;i++) {
	    	for(int j=0;j<c;j++) {
	    		System.out.printf("%6d", maxValue[i][j]);//控制输出长度
	    	}
	    	System.out.println();
	    }
    }
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Backpack_01 bp = new Backpack_01();
		bp.solve();
	}
}

3.命令窗口

01背包问题

2、完全背包问题

2.1 完全背包问题

1.思路

完全背包问题和01背包问题的区别仅仅是可选的物品数量从0和1的选择到0-n的选择。改进的时候只需要加上一个针对不同重量的单个背包,在该容量下循环当前背包个数进行判断就可以解决问题了。

2.代码实现

//完全背包问题
public class Backpack_Complete {
	int n; // 描述物品个数
	int c;// 描述物品容量
	int[] value;// 描述物品价格
	int[] weight;// 描述物品重量,磅为单位
	public Backpack_Complete() {
		value = new int[] { 1000, 2500, 4500, 6000 };
		weight = new int[] { 1, 2, 3, 4 };
		c = 6;
		n = 4;
	}
	public void solve() {
		int[][] maxValue = new int[n][c];// 最后一列是个数
		int[][] num = new int[n * c][n];// 反复更新每一个位置,直到最后一个是为最优的放置方法
		for (int i = 0; i < n; i++) {// 表示当前物品的顺序,应该都是从1-n
			for (int j = 1; j <= c; j++) {// 描述当前能放下的重量	
				if (j / weight[i] == 0) {// 表示当前物品重量小于容纳的重量,j<weight[i]
					if (i == 0) {
						maxValue[i][j - 1] = 0;
						num[j - 1][i] = 0;
					} else {
						int topValue = maxValue[i - 1][j - 1];
						int thisValue = topValue;
						maxValue[i][j - 1] = thisValue;
						for(int l=0;l<n;l++) {
							num[i*c+j-1][l]=num[(i-1)*c+j-1][l];
						}
					}

				} else {			
					for (int k = 1; k <= j / weight[i]; k++) {					
						if (i == 0) {
							if (weight[i] * k <= j) {								
								maxValue[i][j - 1] = value[i] * k;
								num[j - 1][i] = k;
							} else {
								maxValue[i][j - 1] = 0;
								num[j-1][i] = 0;
							}
						} else {
							int topValue = maxValue[i - 1][j - 1];
							int thisValue;
							int m=0;//标记符
							if (weight[i] * k <= j) {
								if (j - weight[i] * k > 0) {
									thisValue = value[i] * k + maxValue[i - 1][j - weight[i] * k - 1];
									m=1;//第一种情况
								} else {
									thisValue = value[i] * k; 
									m=2;//第二种情况,相等,记录下新的物品填充方式
								}
							} else {
								thisValue = topValue;
							}
							if (topValue > thisValue) {
								maxValue[i][j - 1] = topValue;
								for(int l=0;l<n;l++) {
									num[i*c+j-1][l]= num[(i-1)*c+j-1][l];
								}
							} else {
								maxValue[i][j - 1] = thisValue;
								if(m==1) {
									for(int l=0;l<n;l++) {
										num[i*c+j-1][l]=num[(i-1)*c+j - weight[i] * k-1][l];
									}
									num[i*c+j-1][i]=k;	
								}else if(m==2){
									for(int l=0;l<n;l++) {//有可能出现1个2500,2个1000;2个2500,然后1的值没有更新为0的情况
										num[i*c+j-1][l]=0;
									}
									num[i*c+j-1][i]=k;
								}
							}
						}
					}
				}
			}
		}
		System.out.println("----------------最优价值分布矩阵-----------------");
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < c; j++) {
				System.out.printf("%6d", maxValue[i][j]);// 控制输出长度
			}
			System.out.println();
		}
		System.out.println("------------最优价值下物品个数分布矩阵-------------");
		for (int i = 0; i < n; i++) {//表示同一行
			for (int j = 0; j < c; j++) {
				System.out.print("  ");
				for(int k = 0; k < n; k++) {
				    System.out.print(num[i*c+j][k]);
				}
			}
			System.out.println();
		}
	}
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Backpack_Complete bp = new Backpack_Complete();
		bp.solve();
	}

}

3.命令窗口

完全背包问题

3、结语

希望大家都能学有所成,也祝福每个在各类算法大赛上努力过的人能取得理想的成绩!

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页