word 目录中列表空格太大了/word 目录格式调整

本文介绍了如何调整Word中的目录格式,包括调整TOC的结构、改变目录段落间的距离,以及通过小标尺和列表缩进控制目录序号后的空格大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. word 目录格式调整:

如图对应TOC1,TOC2,TOC3,TOC4,进行调整,及可调整相应的目录样式,可以调整目录段落距离等

2.  目录序号后面空格太大了

方法一:可以通过上面的小标尺直接调整距离

方法二:调整列表缩进为空格,结合目录的格式调整,通过空格调整位置

<think>好的,用户现在的问题是关于如何将多种格式的文档(如Word、PDF、Excel)处理成适合微调大模型的数据。之前他们已经询问过如何微调DeepSeek 1.5B模型以及硬件需求,现在进一步关注数据处理的具体步骤。我需要先理解他们的需求,然后给出详细的处理流程和注意事项。 首先,用户可能不太清楚不同格式的文档应该如何转换为模型可接受的文本格式。他们可能有很多非结构化的数据,需要结构化的处理。我需要分步骤讲解转换方法,比如使用Python库处理不同格式,然后进行数据清洗和预处理。 接下来,用户可能没有考虑到数据质量的问题,比如冗余信息、噪音数据或格式问题。需要提醒他们注意数据清洗,比如去除特殊字符、标准化格式、处理缺失值等。此外,隐私问题也很重要,特别是如果文档包含敏感信息,需要提醒用户进行脱敏处理。 然后,用户可能需要知道如何将处理后的文本转换为适合模型训练的格式,比如JSON或CSV,并按照特定结构组织。需要给出具体的例子,比如问答对或段落文本的格式,以及如何划分训练集和验证集。 另外,用户可能对数据增强和tokenization不太熟悉,需要简要介绍相关技术,如回译、同义词替换,以及使用Hugging Face的tokenizer进行处理。同时,要提到处理长文本的策略,比如分块和滑动窗口,避免超出模型的最大长度限制。 最后,需要总结整个流程,并提醒用户根据具体任务调整数据处理方法,确保数据质量和多样性。可能还需要推荐一些工具和库,如PyPDF2、pandas、transformers等,帮助用户实际操作。 在回答时,要注意语言简洁明了,步骤清晰,避免使用过于专业的术语,同时覆盖用户可能忽略的细节,比如隐私保护和数据增强。确保用户能够按照步骤操作,顺利完成数据准备,进行后续的模型微调。</think>好的!将Word、PDF、Excel等非结构化文档转换为适合大模型微调的数据需要经过**数据提取、清洗、格式化**等关键步骤。以下是详细操作指南: --- ### **一、数据提取:从原始文档到文本** #### **1. 工具选择** - **Word文档(.docx)**: 使用Python库`python-docx`直接提取文本。 ```python from docx import Document doc = Document("your_file.docx") text = "\n".join([para.text for para in doc.paragraphs]) ``` - **PDF文档(.pdf)**: - **文本型PDF**:使用`PyPDF2`或`pdfplumber`提取文字。 ```python import pdfplumber with pdfplumber.open("your_file.pdf") as pdf: text = "\n".join([page.extract_text() for page in pdf.pages]) ``` - **扫描件/图片型PDF**:需OCR识别,推荐`pytesseract`+`pdf2image`。 ```python from pdf2image import convert_from_path import pytesseract images = convert_from_path("scan.pdf") text = "" for img in images: text += pytesseract.image_to_string(img) ``` - **Excel/CSV(.xlsx/.csv)**: - 结构化表格数据需转换为自然语言格式(例如问答对或描述文本)。 ```python import pandas as pd df = pd.read_excel("data.xlsx") # 假设表格包含“问题”和“答案”两列 formatted_texts = [f"问题:{q}\n答案:{a}" for q, a in zip(df["问题"], df["答案"])] ``` #### **2. 合并多文件数据** - 遍历文件夹中所有文档,批量提取并合并文本: ```python import os all_text = [] for file in os.listdir("docs/"): if file.endswith(".docx"): # 提取Word文本并加入all_text elif file.endswith(".pdf"): # 提取PDF文本并加入all_text # 其他格式同理... ``` --- ### **二、数据清洗:提升文本质量** #### **1. 去除冗余内容** - **过滤无用符号**:删除乱码、特殊字符(如`�`)、连续空格等。 ```python import re text = re.sub(r"[^\w\s,。?:;‘’“”《》!、]", "", text) # 保留中英文标点 text = re.sub(r"\s+", " ", text) # 合并多余空格 ``` - **删除冗余信息**: - 页眉/页脚(PDF中常见重复内容)。 - 表格中的无关注释(如“单位:万元”)。 - 自动生成的目录、参考文献编号等。 #### **2. 标准化格式** - **统一标点**:将英文标点替换为中文标点(如`,`→`,`)。 - **分段与分句**:按段落逻辑拆分长文本(例如每段不超过512字符)。 - **处理缺失值**:Excel中空单元格填充为“无”或删除整行。 #### **3. 隐私脱敏** - 替换敏感信息(如人名、电话、身份证号): ```python text = re.sub(r"\d{11}", "[PHONE]", text) # 替换手机号 text = re.sub(r"\d{18}|\d{17}X", "[ID]", text) # 替换身份证号 ``` --- ### **三、数据格式化:适配模型输入** #### **1. 定义任务格式** - **对话任务**(如客服问答): ```json {"messages": [ {"role": "user", "content": "如何重置密码?"}, {"role": "assistant", "content": "请登录后进入设置页面..."} ]} ``` - **文本生成任务**(如文章续写): ```json {"text": "深度学习的三要素是:数据、算法和算力。"} ``` - **指令任务**(如任务导向型微调): ```json {"instruction": "翻译成英文", "input": "你好,世界", "output": "Hello, world"} ``` #### **2. 转换为模型输入格式** - 将清洗后的文本按任务需求整理为JSONL(每行一个JSON)或CSV: ```python import json with open("train.jsonl", "w") as f: for item in formatted_texts: f.write(json.dumps({"text": item}) + "\n") ``` #### **3. 划分训练集与验证集** - 按比例拆分(如90%训练,10%验证): ```python from sklearn.model_selection import train_test_split train_data, val_data = train_test_split(formatted_data, test_size=0.1) ``` --- ### **四、进阶优化技巧** #### **1. 数据增强(Data Augmentation)** - **回译(Back Translation)**:中→英→中生成多样化表达。 - **同义词替换**:使用开源工具(如`Synonyms`库)替换部分词汇。 - **添加噪声**:随机删除/插入词语,模拟真实场景容错性。 #### **2. Tokenization适配** - 使用模型对应的分词器预处理文本,避免训练时OOV(未登录词): ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-1.5b") tokenized_text = tokenizer(text, truncation=True, max_length=512) ``` #### **3. 长文本处理** - 若文档过长(超过模型最大长度,如2048 tokens): - **分块(Chunking)**:按段落或固定长度切分。 - **滑动窗口(Sliding Window)**:重叠部分上下文避免信息断裂。 --- ### **五、工具推荐** - **文本提取**: - `pdfplumber`(PDF解析)、`python-docx`(Word解析)、`pandas`(Excel处理)。 - **数据清洗**: - `regex`(复杂正则匹配)、`nlpaug`(数据增强)。 - **格式化工具**: - `jq`(命令行处理JSON)、`Doccano`(标注平台)。 --- ### **总结** - **核心流程**:提取→清洗→格式化→验证。 - **关键点**: - 确保文本质量(去噪、隐私保护)。 - 对齐模型输入格式(如对话结构或指令模板)。 - 处理长文本时保留上下文连贯性。 - **效率建议**:对大规模文档,优先用脚本自动化处理,减少手动干预。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值