chapter.matplotlib可视化1.2柱状图

本文详细介绍了如何使用matplotlib库绘制柱状图,包括基本使用、设置填充颜色、透明度、绘制格网、调整柱状图宽度、绘制水平柱状图、设置刻度和标签以及添加图例等步骤,提供了丰富的实例和运行结果展示。
摘要由CSDN通过智能技术生成

基本使用

绘制柱状图主要使用matplotlib的bar函数。相比于pandas,matplotlib绘制起来较复杂,需要传入刻度列表和高度列表。
实例:绘制简单的柱状图

import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
data=[20,80,70,40,100]
plt.bar([1,2,3,4,5],data)

运行结果:
在这里插入图片描述

设置柱状图的填充颜色

实例接上
最后一行代码修改为:
plt.bar([1,2,3,4,5],data,color='pink')
运行结果如下:
在这里插入图片描述
填充为紫色

plt.bar([1,2,3,4,5],data,color='purple')

在这里插入图片描述

设置柱状图填充颜色的透明度

使用alpha参数设置透明度
实例同上。

import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
data=[20,80,70,40,100]
plt.bar([1,2,3,4,5],data,color='purple',alpha=0.1)

运行结果:
在这里插入图片描述
alpha参数的值设置为0.5试一下
在这里插入图片描述

绘制格网

使用grid函数可以绘制格网,通过对其参数设置已达到个性化效果。

import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
data=[20,80,70,40,100]
plt.bar([
Matplotlib是一个Python的数据可视化库,它提供了各种绘图工具和API,可以方便地创建各种类型的图表、图形和可视化效果。在数据可视化过程中,Matplotlib的作用主要有以下几个方面: 1. 创建各种类型的图表:Matplotlib提供了丰富的绘图工具和API,可以方便地创建各种类型的图表,包括折线图、散点图、柱状图、饼图、面积图、热力图等。 2. 自定义图表样式和布局:Matplotlib提供了各种可配置的参数和选项,可以自定义图表的样式和布局,包括颜色、字体、线型、坐标轴等。 3. 支持数据分析和统计可视化Matplotlib可以与NumPy、Pandas等数据处理工具结合使用,支持数据分析和统计可视化,如直方图、箱线图、密度图等。 4. 支持交互式可视化Matplotlib可以与Jupyter Notebook等交互式开发环境结合使用,支持交互式可视化,用户可以通过鼠标和键盘进行数据探索和交互操作。 5. 支持多种输出格式:Matplotlib支持多种输出格式,包括图片格式、PDF格式、SVG格式等,可以方便地将可视化结果导出并共享给其他用户。 综上所述,Matplotlib在数据可视化过程中具有重要的作用,可以方便地创建各种类型的图表、自定义图表样式和布局、支持数据分析和统计可视化、支持交互式可视化和多种输出格式等,为数据分析和可视化提供了强大的工具支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值