从零开始使用pytorch-deeplab-xception训练自己的数据集
-
使用Labelme进行数据标定,标定类别
-
将原始图片与标注的JSON文件分隔开,使用fenge.py文件,修改source_folder路径(这个路径为原始图片和标注的.json的文件夹),得到JPEG、JSON文件夹
import os
import shutil
source_folder = 'F:/***/***' # 更改为你的文件夹路径
# 创建JPEG文件夹
jpeg_folder = os.path.join(source_folder, 'JPEG')
if not os.path.exists(jpeg_folder):
os.mkdir(jpeg_folder)
# 创建JSON文件夹
json_folder = os.path.join(source_folder, 'JSON')
if not os.path.exists(json_folder):
os.mkdir(json_folder)
# 遍历源文件夹
for filename in os.listdir(source_folder):
if filename.endswith('.jpg'):
# 将JPEG文件移动到JPEG文件夹
shutil.move(os.path.join(source_folder, filename), os.path.join(jpeg_folder, filename))
elif filename.endswith('.json'):
# 将JSON文件移动到JSON文件夹
shutil.move(os.path.join(source_folder, filename), os.path.join(json_folder, filename))
- 三、 运行demo.py将JSON文件夹中的.json文件转化为掩码图,掩码图文件格式为.png。运行此文件时需修改json_file、out_jpg_path、out_mask_path三处的路径
import argparse
import base64
import json
import os
import os.path as osp
import imgviz
import PIL.Image
from labelme.logger import logger
from labelme import utils
def main():
logger.warning(
"This script is aimed to demonstrate how to convert the "
"JSON file to a single image dataset."
)
logger.warning(
"It won't handle multiple JSON files to generate a "
"real-use dataset."
)
# json_file是标注完之后生成的json文件的目录。out_dir是输出目录,即数据处理完之后文件保存的路径
json_file = r"F:\chedaoxian\new_datasets_pic_xml\JSON"
out_jpgs_path = "F:/***/***/pic/JPEGImages"
out_mask_path = "F:/***/***/pic/SegmentationClass"
# 如果输出的路径不存在,则自动创建这个路径
if not osp.exists(out_jpgs_path):
os.mkdir(out_jpgs_path)
if not osp.exists(out_mask_path):
os.mkdir(out_mask_path)
for file_name in os.listdir(json_file):
# 遍历json_file里面所有的文件,并判断这个文件是不是以.json结尾
if file_name.endswith(".json"):
path = os.path.join(json_file, file_name)
if os.path.isfile(path):
data = json.load(open(path))
# 获取json里面的图片数据,也就是二进制数据
imageData = data.get("imageData")
# 如果通过data.get获取到的数据为空,就重新读取图片数据
if not imageData:
imagePath = os.path.join(json_file, data["imagePath"])
with open(imagePath, "rb") as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode("utf-8")
# 将二进制数据转变成numpy格式的数据
img = utils.img_b64_to_arr(imageData)
# 将类别名称转换成数值,以便于计算
label_name_to_value = {"_background_": 0}
for shape in sorted(data["shapes"], key=lambda x: x["label"]):
label_name = shape["label"]
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
lbl, _ = utils.shapes_to_label(img.shape, data["shapes"], label_name_to_value)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
lbl_viz = imgviz.label2rgb(
label=lbl, image=imgviz.asgray(img), label_names=label_names, loc="rb"
)
# 将输出结果保存,
PIL.Image.fromarray(img).save(osp.join(out_jpgs_path, file_name.split(".")[0] + '.jpg'))
utils.lblsave(osp.join(out_mask_path, "%s.png" % file_name.split(".")[0]), lbl)
print("Done")
if __name__ == "__main__":
main()
-
下载pytorch-deeplab-xception-master压缩文件(文件链接https://github.com/jfzhang95/pytorch-deeplab-xception)。然后建立一个VOC文件夹,然后在VOC文件夹里建立三个文件夹命名分别为:ImageSets、JPEGImages、SegmentationClass。见图
-
将步骤三中的out_jpg_path、out_mask_path路径下的文件分别copy到JPEGImages、SegmentationClass文件夹中,修改spilt.py中xmlfilepath与txtsavepath路径,划分数据集
import os
import random
#训练集所占比例
trainval_percent = 1.0
train_percent = 0.9
#标签文件路径
xmlfilepath = 'D:/***/VOC2007/JPEGImages'
#生成txt目录文件夹所在路径
txtsavepath = 'D:/***/VOC2007/ImageSets/Segmentation'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open(txtsavepath + '/trainval.txt', 'w')
ftest = open(txtsavepath + '/test.txt', 'w')
ftrain = open(txtsavepath + '/train.txt', 'w')
fval = open(txtsavepath + '/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
- 上述步骤已完成数据准备工作,训练参考大神,链接如下(https://blog.csdn.net/weixin_41861700/article/details/123923433)
- 训练结果展示