独立任务最优调度

题目描述:
用2台处理机A和B处理n个作业。设第i个作业交给机器A处理时需要时间ai,若由机器B来处理,则需要时间bi。由于各作业的特点和机器的性能关系,很可能对于某些i,有ai≥bi,而对于某些j,j≠i,有aj<bj。既不能将一个作业分开由2台机器处理,也没有一台机器能同时处理2个作业。设计一个动态规划算法,使得这2台机器处理完这n个作业的时间最短(从任何一台机器开工到最后一台机器停工的总时间)。研究一个实例:(a1,a2,a3,a4,a5,a6)=(2,5,7,10,5,2);(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)。
对于给定的2台处理机A和B处理n个作业,找出一个最优调度方案,使2台机器处理完这n个作业的时间最短。
思路:
利用一个二维数组f[k][x]表示完成K个任务A所花费的时间为x的条件下B所需要的时间
当x>a[k]时,f[k][x] = min(f[k-1][x] + b[k], f[k-1][x-a[k]]),
否则f[k][x] = f[k-1][x] + b[k]
代码:

#include<iostream>
#include<cstring>
using namespace std;

int sum=0;
int f[100][100];//f表示前k个任务A花费的时间为X的前提下B需要的时间
int min_t=0x3f3f3f;

void solve(int a[],int b[],int n) {
for(int i = 1; i <= n; i++) {
sum +=a[i];
}
memset(f,0,sizeof(f));
for(int k = 1; k <= n; k++) {
for(int x = 0; x <= sum; x++) {
if(x > a[k]) {
f[k][x] = min( f[k-1][x-a[k]] , f[k-1][x] + b[k]);
}
else {
f[k][x] = f[k-1][x] + b[k];
}
}
}
int temp;
for(int k = 0; k <= sum; k++) {
temp = max(f[n][k],k);
if(min_t > temp) {
min_t =temp;
}	
}
}

int main() {
int n;
int a[100],b[100];
cin>>n;
for(int i = 1; i <= n; i++) {
cin>>a[i];
}
for(int i = 1; i <= n; i++) {
cin>>b[i];
}
solve(a,b,n);
cout<<“最少需要花费的时间:”<<min_t;
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值