Unet 改进:添加双交叉注意力模块(DCA)

目录

1. 双交叉注意力模块(DCA)

2.  utils 

3. Unet 改进


Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可

1. 双交叉注意力模块(DCA)

双交叉注意力模块(Dual Cross-Attention , DCA),其目标是在轻微的参数和复杂性增加的情况下改进U-Net及其变体,能够简单而有效地增强u-net结构中的跳跃连接(skip-connection)。

### 关于UNet架构的改进方法 #### UNet++的设计理念及其优势 UNet++通过引入密集跳跃连接(Dense Skip Connections)解决了原始UNet中存在的梯度消失问题以及信息流不足的问题[^1]。这种设计不仅增强了浅层特征向深层传播的能力,也使得不同尺度下的特征能够更好地融合在一起。 #### ADown下采样的应用 为了改善传统的最大池化操作带来的信息损失,有研究者提出了ADown这一新型下采样机制。相较于常规的最大池化或步幅卷积,ADown能够在减少分辨率的同时保留更多的语义信息,从而提高了模型对于复杂场景的理解能力[^3]。 #### 广义高效层聚合网络(GELAN)与可编程梯度信息(PGI) GELAN结合了PGI概念,在保持较低计算成本的前提下实现了高效的多任务处理性能。该框架允许灵活配置不同的任务需求,并确保每个分支都能接收到充分的信息支持以完成特定目标。此方案特别适合资源受限环境下的实时图像分割任务。 ```python import torch.nn as nn class GELAN(nn.Module): def __init__(self, input_channels=3, num_classes=21): super().__init__() self.encoder = Encoder(input_channels=input_channels) self.decoder = Decoder(num_classes=num_classes) def forward(self, x): features = self.encoder(x) output = self.decoder(features) return output ``` #### DeepLabV3+的技术特点 DeepLab系列算法通过对ASPP(Atros Spatial Pyramid Pooling)模块的应用扩展了感受野范围,有效捕捉到了更大范围内上下文关系;同时采用编码解码结构进一步提升了边界区域像素分类准确性。此外,Xception作为骨干网的选择也为整体效率带来了显著增益[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值