Learning to Learn Single Domain Generalization 阅读笔记

介绍

在这里插入图片描述
如图1所示:领域自适应通常希望目标域(未标记或已标记)的可用性。而领域泛化通常假设多个域用于训练。

single domain目标:从一个源域生成多个目标域的数据。训练数据和测试数据的分布不同,需要对数据进行泛化。

这篇文章的主要工作:

  • 考虑一个模型能够在许多不可见域上表现良好,而只有一个域可供训练的场景。
  • 提出一种基于元学习的对抗性领域增强的方法来解决单领域泛化问题。
  • 通过对抗性训练生成“虚拟”领域,来提高单个领域的泛化能力。
  • 使用自动编码器(WAE)来放松广泛使用的最坏情况约束。

自动编码器(WAE):重新提取特征,降低维度,最小化重构错误。还可以降低特征的维度。
元学习:找到一个好的初始化,它可以在几个梯度步骤内快速适应新任务。
对抗训练:用于提高模型对对抗性扰动或攻击的鲁棒性。

模型

在这里插入图片描述
对抗域增强:由一个任务模型和自动编码器组成。如图2所示,任务模型由一个特征提取器F将输入空间映射到嵌入空间,还有一个分类器C用来从嵌入空间预测标签。
在这里插入图片描述

整体损失(目标函数 L A D A L_{ADA} LADA) = 分类损失 - 语义一致性约束 + 大领域输出
采用迭代的方式在增广域S+中生成对抗样本x+,Lconst对对抗样本施加语义一致性约束。直观地说,Lconst 控制了由 Wasserstein 距离 测量的源域之外的泛化能力。然而,Lconst 产生有限的域传输,因为它严重限制了样本之间的语义距离及其扰动。因此,提出了 Lrelax 来放松语义一致性约束并创建大域传输。

作者期望增强域S+与源域S有很大不同,也就是希望最大化S+和S之间的域差异但是,语义一致性约束 Lconst 将严重限制从 S 到 S+ 的域传输,对产生理想的 S+ 提出了新的挑战。为了解决这个问题,作者建议 Lrelax 来鼓励域外增强。

使用自动编码器来实现Lrelax

算法

技术障碍1:由于最坏情况公式中的语义一致性约束的矛盾,很难创建与源域不同的虚拟域。
技术障碍2:希望探索许多“虚构”域来保障足够的覆盖,这可能会导致巨大的计算开销。
解决方案:通过元学习组织对抗性领域增强,得到一个单域泛化的高效模型。
在这里插入图片描述
V:作为鉴别器来区分增强是否在源域之外,
利用元学习方案来训练单个模型。为了模拟源域 S 和目标域 T 之间的真实域转移,在每次学习迭代中,对源域 S 执行元训练并在所有增强域 S+ 上执行元测试。

在这里插入图片描述
在这里插入图片描述

元训练:Ltask对来自源域S的样本进行计算,并且模型参数 θ \theta θ通过一个或多个梯度更新, η \eta η为学习率。
元测试:计算每个增强域 S k + S^+_k Sk+上的损失。
元更新:通过组合损失计算的梯度来更新 θ \theta θ

可视化

实验

在这里插入图片描述
作者将自己的方法与小样本域适应的先进方法进行比较,发现MADA具有不错的效果。

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
domain generalization(领域通用化)和transfer learning(迁移学习)是两个在机器学习领域中常用的技术。 领域通用化是指在训练模型时,通过提供多个不同领域的训练数据,使得模型在未知领域中表现良好的能力。例如,我们可以通过在不同城市收集的照片训练一个图像分类模型,并使其能够在未收集照片的城市中准确分类图像。领域通用化的目标是降低模型对训练数据中特定领域的依赖,提高模型的泛化能力。 迁移学习是指将已经训练好的模型(称为源模型)应用于新的任务或领域。源模型可以是在大规模数据集上训练的深度神经网络,具有强大的特征提取能力。通过迁移学习,我们可以利用源模型的学习到的特征表示,快速训练一个适应新任务或领域的模型。迁移学习的目标是通过利用先前任务中学习到的知识,加快在新任务上的学习效果。 尽管领域通用化和迁移学习都是为了提高模型在未知领域中的泛化能力,但它们的方法和应用场景略有不同。领域通用化更关注在训练阶段中提供多领域数据,通过训练模型克服数据集中的领域偏差;而迁移学习则更关注如何将源模型的知识迁移到新任务或领域中,并在少量新数据集上进行微调。迁移学习常用于数据集不足的情况下,可以通过利用已有的大规模数据集上学习到的特征来改善模型性能。 总之,领域通用化和迁移学习是两个重要的技术,可以提高机器学习模型的泛化能力。领域通用化通过多领域数据训练模型,减少对特定领域的依赖;迁移学习则通过利用源模型的知识迁移到新任务或领域,快速训练适应新任务的模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1100dp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值