- 博客(42)
- 收藏
- 关注
原创 2024年顶级算法-黑翅鸢优化算法(BKA)-详细原理(附matlab代码)
这个F根据他原文的描述很明显是适应度值,一个种群中有pop个个体,用i来表示,j是代表维度,y(i)是代表种群中的任一个体,那么再读读这句话“Fri表示第t次迭代中任意一只黑翅鸢得到的第j维随机位置的适应度值。”这句话明显有问题,首先适应度值是个体的适应度值,个体可以这么叫,个体中各个维度的那不叫适应度值(fitness value),叫值(value),个体中各个维度的值共同作用于目标函数得到适应度值。pop是潜在解的个数,dim是给定问题维数的大小,BKij是第i个黑翅鸢的第j个维数。
2024-05-24 15:58:17 2744 2
原创 适合做应用的算法-鲸鱼优化算法(WOA)详细原理-附matlab代码
鲸鱼优化算法 (Whale optimization Algorithm, WOA)是 2016 年由 Mirjalili 等提出的一种新型启发式搜索算法,该算法通过模仿座头鲸在海洋中的捕食行为, 对鲸鱼群体搜索、包围和攻击过程模拟实现来寻找最优解. 与传统的元启发式优化算法相比, 鲸鱼优化算法具有操作简单, 需要设置的参数少, 寻优能力强等优点 . 目前 WOA 已应用在特征规划、光伏发电短期预测、云计算任务调度、路径规划等多个领域。鲸鱼优化算法的开发阶段包括收缩包围和气泡网攻击两个阶段。
2024-05-24 15:52:06 1971
原创 附代码:策略常用-正余弦优化算法
正余弦优化算法作为群智能优化算法的一种, 正弦余弦算法 (sine cosine algorithm, SCA) 是 2016 年由 Mirjalili 提出的一种新型仿自然优化算法, 通过创建多个随机候选解, 利用正余弦函数的数学性质来平衡算法在搜系过程中的全局探索和局部开发能力。该算法,很简单,而且参数少,公式少,但是其常用于混合在别的算法中,想这个改进正余弦,用作策略,具体可看我下面的那个文章。原始正余弦算法matlab代码,且包含算法原文,后台回复:正余弦。看过之后,基本就会用了,这公式很简单。
2024-05-23 21:26:14 359
原创 为什么别人写的SCI文章,容易接收?有技巧?
首先要对自己的实验进行验证,描述,以客观的态度去叙述,对你创新有妨碍作用的点,能不放就不放,如果必须地放,能不描写,就尽量不描述,避不开的,就用春秋笔法(不懂的百度一下)去描述。从审稿人的角度,试想一下,当看到你的改进,看到不如那个算法,也不如另一个算法,你还花大量的时间来改进,意义何在,还花大量的精力去叙述这个算法如何如何好,如果我是这篇文章的审稿人,大概率就会想这个作者是懂如何睁着着眼睛说瞎话的,一句创新性不够,优势不明显,就给他打回去了。比如说,我改进的算法好,那就全篇突出说明改进的算法好。
2024-05-23 21:22:31 1125
原创 优化算法通用的优化策略:单纯形法
单纯形法步骤如下: 以最优化问题 为例, 计算最优点 、最差点 、次优点 的函数值, 根据最优点和最差点计算中点位置 , 基本操作如下。前些天在忙,他们学生刚盲审完,给他们改完,本想着自己写了一篇准备投出去,事情太多了,现在文章也差不多在写一半了,还有些小细节在修改。综上,单纯形法具有较高的价值,很多人也没见过听过,可以说很新颖,适合喜欢自己动手改进的,当然每种策略应用在各种算法上效果各有不同。如果 , 说明反射方向有误, 进行向内压缩操作 , 其中 为压缩系数, 本文取 0.5。
2024-05-20 21:13:33 380
原创 免费领取!分类、预测、回归、(多目标鲸鱼优化算法、遗传算法、多目标粒子群算法)
多目标优化作为一类复杂的最优化问题,既被用于生产调度、城市运输、网络通信等系统的实时设计,又涉及工程设计、数据挖掘、资本预算等智能规划问题,无论是在理论研究还是工程实践中都具有深远的意义。这些优化方法大多是采取不同的策略将多目标问题分解为单目标问题,再使用单目标算法完成优化,依赖于先验知识,受限于Pareto前沿的形状。典型的多目标进化算法有:多目标粒子群算法,多目标蝗虫算法,多目标樽海鞘群算法,多目标鲸鱼算法,多目标差分算法等[1]。机器学习中,分类+回归+时序预测。更多内容在公众号:算法仓库。
2024-05-20 21:11:02 334
原创 正余弦策略,创新性不足?那是你没有这样用!
式中是迭代t次后的解,是目前为止得到的解的最佳位置,是总体解决方案中的最佳位置,r2是一个均匀分布的随机数,介于0和1之间。当λ较小时,当前解与当前最优 解之间存在较大差异,下一个搜索区域将更多地集中 于当前最优解附近,相反,当λ较大时,当前解很接近 当前最优解,下次搜索将加强对当前解自身位置附近 区域的开发。,而部分淡化了当前解的位置信息,这使 得SCA更加专注于当前最优解附近的区域,加强了局 部开发能力。式中:λ是平衡因子,由式(3)描述,其功能是调整当前 最优解和当前解之间的权重。
2024-04-22 17:18:01 448
原创 聊聊算法改进的事情
不能说效果最强,那起码也是在蜣螂变体里面能排得上的好吧,其实我也测了好几个变体加一块放了试试,还是最强,但我选了一个一区的强的,就是为了让你们看看,连这个都对比明显。但也有人抬杠,说DBO在1000次不是已经要下去了吗,我告诉你,不可能,在这个迭代次数会下去,我不否认DBO的好,我运行了好多次,从来没有说DBO会在这有限的区间达到这样的效果。我自己写文章把我自己给写激动了,哈哈哈,读者见谅,因为这个算法我花了好多精力和去改进,我也是人嘛,有七情六欲,当然不可避免地想成果想获得别人的认同。
2024-01-17 11:42:06 508
原创 为什么蜣螂优化算法DBO改进如此简单?
种群大小是30,维度30,最大迭代次数500,统一设置的,,测试集是CEC2017,与原文一样,为了说明我这个改进的更好,更稳定,运行30次,计算参数,平均值,标准差,最优值,最差值,让大家看。一个算法,老师压力给到你,就让你去改,你说,他什么指导也没有,全凭一张嘴,学生跑断腿,改进算法,小白当然不好改。首先,它是多子种群的算法,这样就意味着繁杂,一般人无从下手,一般人的改进可能还不如原来的改进算法呢。改进算法的想法有很多,其中很重要的思想就是算法融合,这样在论文中,就好写,有更多的内容可以写。
2024-01-16 21:39:49 1264 2
原创 鲸鱼优化算法WOA改进预告
鲸鱼优化算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的启发式优化算法。这个算法模拟了鲸鱼的觅食行为和社会行为,通过模拟这些行为来解决优化问题。鲸鱼优化算法的核心思想是通过模拟鲸鱼群体的合作与竞争行为,以期望在搜索空间中找到较好的解。在更新位置的过程中,需要确保鲸鱼在搜索空间内,因此可能需要进行边界处理。首先,生成一个初始的鲸鱼群体,并为每个鲸鱼分配一个随机的位置。鲸鱼还考虑其他鲸鱼的经验,尝试向着全局最优的方向移动。在每次迭代中,更新全局最优解。
2024-01-14 18:21:05 479
原创 非常非常实用!不能错过,独家原创,9种很少人听过,但却实用的混沌映射!!!以鲸鱼混沌映射为例,使用简便
在实践中,对于不同的问题和算法,可以进行多次实验,通过比较使用混沌映射和不使用的结果,来确定是否采用混沌映射作为初始化的一部分。混沌映射作为一种初始化手段,确实可以增加算法的多样性和全局搜索性能,但在算法的后续迭代中,最终结果仍然受到算法自身的迭代更新和搜索策略的影响。很多人在改进的时候,想着增加混沌映射,增加初始种群的多样性,可是,大多数论文中常见的映射,都被别人使用了,或者不知道被别人有没有使用,由于混沌映射生成的数值较为独特,使用混沌映射初始化可以减少种群中个体初始值的重复情况,提高算法的探索效率。
2024-01-14 18:03:18 1604
原创 麻雀搜索算法SSA预告
麻雀搜索算法(Sparrow Search Algorithm,SSA)是一种模拟麻雀觅食行为的优化算法,由Ahmed K. Attiya在2018年提出。麻雀搜索算法的灵感来源于麻雀在觅食时的群体协作和信息传递行为。就像其他自然启发式算法一样,麻雀搜索算法的性能通常取决于参数的选择和算法的调整。计算每只麻雀的适应度,即其在问题空间中的解对应的目标函数值。模拟麻雀之间的信息传递,以促使群体更好地收敛于问题的最优解。随机生成一群麻雀的初始解,代表问题空间中的潜在解。根据模拟的麻雀觅食行为更新每只麻雀的位置。
2024-01-10 19:15:56 412
原创 炫技作品!极好!独家原创!一种新型改进的蜣螂优化算法(CCCDBO)
粪甲虫的位置根据一定的规则进行更新,类似于粪甲虫在滚球过程中保持直线的移动路径。觅食区域策略:为了模拟粪甲虫在自然界中的觅食过程,DBO算法建立了最佳觅食区域的边界,并通过这一策略更新小粪甲虫的位置,以实现更有效的搜索过程。这一策略通过切线函数来模拟新的滚动方向,使粪甲虫重新定位自己以获得新的可行路径。蜣螂优化算法DBO的含金量不用我多介绍了吧,这是和麻雀优化算法SSA同一个课题组出的算法,业内公认的比较好的算法,自己看图,F5,F6, F7函数有多难改进,相信改进过算法的都知道,此改进算法。
2024-01-10 19:10:19 1088
原创 蜣螂优化算法DBO预告
DBO算法灵感来源于粪甲虫的滚球、舞蹈、觅食、窃取和繁殖行为。模拟了粪甲虫滚球的行为,其搜索策略要求在整个搜索空间中保持直线路径。粪甲虫的位置根据一定的规则进行更新,类似于粪甲虫在滚球过程中保持直线的移动路径。为了模拟粪甲虫在自然界中的觅食过程,DBO算法建立了最佳觅食区域的边界,并通过这一策略更新小粪甲虫的位置,以实现更有效的搜索过程。这一策略通过切线函数来模拟新的滚动方向,使粪甲虫重新定位自己以获得新的可行路径。该策略定义了产卵区域的边界选择策略,确保后代有一个相对安全的生长环境。
2024-01-09 16:04:14 1013
原创 独家原创:“ARO算法的再进化,BMARO的创新改进与卓越表现“
兔子的探险和寻找食物的行为启发了ARO的设计,其中包括探索性行为、逃避性行为和合作性行为。算法在搜索空间中随机生成个体,并通过迭代的方式,利用适应度评估和随机性操作,逐渐调整个体位置,以期望找到全局最优解或接近最优解的解决方案。BMARO在继承ARO的基础上,通过引入新的元素或优化策略,以期提高算法的性能、收敛速度或适应性,从而更好地适应不同类型的优化问题。总体而言,人工兔优化算法是一种模拟自然界兔子智能行为的优化算法,其灵感来源于生物学中群体智能和合作行为。
2024-01-09 15:49:51 587
原创 人工兔优化算法(ARO)
移动是指兔子朝着更好的解的方向移动一小步,而跳跃是指兔子以较大的步伐跳向另一个位置。然而,它也有一些限制,例如可能陷入局部最优解,因此在实际应用中需要谨慎使用,并根据问题的特点进行参数调整。终止条件:重复上述步骤,直到达到预定的终止条件,例如达到最大迭代次数或找到满足一定条件的最优解。更新位置:根据兔子的移动或跳跃,更新兔子的位置。适应度评估:对每个兔子的解进行适应度评估,通常使用问题特定的目标函数来衡量解的质量。种群初始化:开始时,随机生成一群“兔子”作为种群,每个兔子代表一个潜在的解。
2024-01-07 16:46:00 605
原创 效果极好,不容错过,独家原创:一种新型改进白鲸优化算法(KABWO)
此改进的F5函数,绝大部分改进者改进的,无论其他什么算法改进的,都达不到0,所以此改进全局效果很好。改进点在说明文档里,matlab代码注释非常详细,搭配改进文档,非常好用。,效果极好,非常适合用来发文章,改进点可以直接拿来用,有很强的参考意义。白鲸优化算法BWO作为一种近期比较火的优化算法,深受人们和编辑的喜爱。可以看出收敛很快,而经常改进算法的人都知道,F5的难度,测试集:cec2005, matlab:2023a。倒卖此份者死全家,二次贩卖此份代码者死全家。本人独家原创,请支持原创,支持正版,
2024-01-07 16:32:02 624
原创 免费!免疫算法在物流中心选址中的应用matlab 代码
免疫优化算法(Immune Algorithm,简称IA)是一类基于生物免疫系统的计算模型而发展起来的优化算法。这类算法主要受到生物免疫系统中免疫细胞相互作用和进化机制的启发。
2024-01-03 16:26:49 543
原创 一文读懂,值得细读,遗传算法等优化算法的收敛性及分析模型
按 照模式理论,选择算子对种群实行“优胜劣汰”,而适应度高的个体会很快充 满交配池,适应度低的个体即被淘汰,但是适应度低的个体所含有的模式可 能是优良的,在淘汰适应度较低的个体的同时,可能把较好的模式也淘汰掉 了,这样使得整个搜索趋势走向局部较优解,种群因缺乏好的基因物质而找 不到全局最优解。规模过小,则没有足够的基因来寻优。但一直以来,遗传算法的理 论分析相对缺乏,进而对遗传算法的应用发展缺乏相应的理论支撑,而收敛性作为遗传算法的首要特性,决定着此算法的可行性,更是影响着遗传算法的发展。
2024-01-03 16:03:16 4699 1
原创 源码又免费!新手学习!老手参考!基于蚁群算法的二维路径规划
信息素更新:每只蚂蚁完成路径后,根据路径的质量(例如,路径的总长度)来更新信息素矩阵。通常,路径质量越好的路径会释放更多的信息素,以便吸引其他蚂蚁选择相似的路径。通常,蚂蚁会基于两个因素来做决策:信息素浓度和启发式信息(例如,距离或者路径的质量)。蚂蚁的移动过程可以是随机的,但更有可能选择信息素浓度高的路径。同时,初始化一个信息素矩阵,用来表示路径上的信息素浓度。信息素矩阵的初始值可以是随机的或者固定的。结果提取:一旦算法完成,可以从信息素矩阵中提取最优路径,这通常是信息素浓度最高的路径。
2023-12-30 23:23:27 547
原创 限时免费!基于蚁群算法优化的旅行商问题(TSP)--matlab源码
TSP问题通常表示为一个包含多个城市的图,每个城市之间都有一条边,边上有对应的距离或成本。信息素更新:蚂蚁完成一轮移动后,根据它们的路径质量(通常是路径长度)来更新路径上的信息素水平。较短路径上的信息素会增加,较长路径上的信息素会蒸发。蚂蚁行动:每只蚂蚁按照一定规则(例如,概率性地选择下一个城市)在城市之间移动,直到所有城市都被访问一次。蚂蚁的移动规则可以基于信息素水平和启发式信息(例如,距离)来决定。参数调优:蚁群算法中有许多参数,如信息素挥发率、启发式信息的权重等,需要进行参数调优以获得最佳性能。
2023-12-30 23:19:41 559
原创 数学推导!免疫算法收敛性分析,你绝对不能错过!!
文章来源于个人公众号:算法仓库,因为CSDN不支持latex,可能有些字母识别不出来,仔细看可以访问原文链接:【数学推导】免疫算法收敛性分析,你绝对不能错过!!1.免疫算法介绍生物免疫算法(AIA)的应用研究涉及很多领域,考虑到一个工程问题总能构造为一个函数优化问题,因此函数优化计算是免疫算法应用的一个重要方向。生物免疫系统能够随时更新处理不同抗原的抗体,其多样性抗体产生和进化机理可用于求解函数优化问题。由于函数优化问题的普遍性和重要性,几十年来得到了广泛和深入的研究。直到现在,仍有许多学者在对函数最优化问
2023-12-28 20:27:33 1251
原创 限时白送!免费!鱼群算法与粒子群算法的混合算法
例如,可以利用人工鱼群算法的全局搜索能力来快速探索解空间,然后再通过粒子群算法的局部搜索能力来精细调整候选解,从而获得更优的最终解。这个算法具有一定的全局搜索能力,可以帮助克服局部最优解的困扰。人工鱼群算法和粒子群算法都是优化算法中常用的方法,它们分别源自不同的生物学启发和数学模型,而将它们混合在一起可以充分发挥它们各自的优点,从而提高优化问题的求解性能。总之,人工鱼群算法和粒子群算法的混合可以被看作是一种强大的优化方法,它充分发挥了两种算法的特点,为复杂的优化问题提供了一种有效的解决方案。
2023-12-28 20:19:50 345
原创 全局优化算法大揭秘!让你轻松躲开局部最小值陷阱!
为了获得更大的找到最优解的期望,算法中一定要有足够的随机性。对于目前的一些问题,可能会出现较多的局部最优解,而启发式优化算法一般情况下只会找到一个局部最优或者全局最优,此时,我们可以考虑设计算法,使得其能够保证在优化过程中记录不同搜索空间的局部最优,在这些局部最优点中重新去迭代优化,这样个人感觉迭代优化会更快一些,这就是与禁忌搜索算法结合起来。找到局部最优解的过程就是集中性的一种体现,集中性越强,找到局部最优解的速度越快,但缺点是,由于一般NP难问题的解空间过于庞大,集中性太强的算法没有考虑到全局最优性。
2023-12-26 19:23:35 1249
原创 新手学习,三种不同算法致力解决微电网调度模型
文献[4,5]通过传统粒子群算法求解以经济 成本、环境成本以及功率波动为主的多目标模型, 但传统PSO算法却易陷入局部最优,为了克服这 一缺点,本文着重从学习因子、惯性权重方面对 粒子群算法进行改进。微电网优化调度是指在满足系统的各种约束 条件下,合理安排不同的DG出力和微网与主网之 间的输电功率,从而达到低运行成本、低排放、高 可靠性、高发电效率等不同目标。【1】张军六, 樊伟, 谭忠富, 等. 计及需求响应的气电互 联虚拟电厂多目标调度优化模型[J]. 电力建设, 2020, 41(2): 1-10.
2023-12-26 18:23:19 394
原创 极其详细,阐述麻雀优化算法的优缺点和非常全的改进思路
在 SSA 算法中,发现者的步长控制参数 β 和 K在平衡全局搜索能力与局部开发能力方面发挥重要作用,但因为 β 和 K 都为随机数,无法满足算法在解空间的探索,可能导致 SSA 陷入局部最优,于是对步长控制参数 β 和 K 进行优化,较大的控制参数便于全局搜索,较小的控制参数促进局部开发。是最小的常数,以避免分母出现零。以上种种,皆可为读者参考,由此可以深思其他算法类似的改进,当然这些只是改进的想法和思路,具体的改进效果需要各位读者去调试,因为这个改进的效果本来就很好,改进过后也不尽然比原来的算法好。
2023-12-24 19:29:48 5426 3
原创 超越单一算法!AO和AVOA的完美结合,IHAOAVOA助你解决全局优化难题!
基于这两种算法的特点,本文提出了一种改进的AO和AVOA混合优化器IHAOAVOA,以克服单一算法中的不足,为求解全局优化问题提供更高质量的解决方案。天鹰优化( AO )和非洲秃鹫优化 ( AVOA )是两个新开发的元启发式算法,分别模拟了自然界中天鹰和非洲秃鹫的几种智能狩猎行为。由此可见,此改进算法效果极好,基本上如原文所说,完美融合了两个算法得优点,同时又通过新的机制,是全局搜索更强。然后,设计了一种新的复合反向学习算法( COBL ),以增加种群多样性,帮助混合算法跳出局部最优。
2023-12-21 17:12:15 280
原创 “不再盲目选择!提高多样性,加速收敛——融合动态概率阈值和自适应变异的鲸鱼优化算法“
式中,cauchy 的权重系数在前期取值相对 较大,并以较大变异步长在更大范围搜索空间探索 可能的最优解,在优化后期,λ1逐渐减小,而 cauchy 权重系数λ2不断增大.而 较小的变异步长,便于算法在最优解领域搜索,提高 算法局部开采能力,提高收敛精度。针对这一问题,受粒子群算法启发,本文设计可变权重,动态修改当前最优解位置,即在鲸鱼个体在搜索初期,采用较大权重对当前最优解位置进行扰动,扩充搜索领域,以更大概率靠近最优位置,在迭代后期以较小权重扰动当前最优位置,达到最优解领域精细搜索和快速收敛的目的。
2023-12-21 17:09:49 419
转载 国庆热门专辑------用python制作国庆头像
用python制作头像,,,,国庆节的时候,很多地方都会升挂国旗,庆祝祖国一年一度的节日给自己制作国旗头像,是一件很有意义的事。微信官方就曾经举办过活动。制作国旗头像的方法有很多,本文给大家介绍用Python制作渐变的微信国旗头像,渐变的国旗头像效果非常好看。
2022-09-30 19:42:03 267 2
原创 python练手小项目:运用列表创建《延禧攻略》之魏璎珞请客
列表创建《延禧攻略》之魏璎珞请客。python小项目练手,实战必备,非常实用,基本上融合了列表的所有知识点。
2022-09-18 10:12:50 113
原创 一文真正读懂python中的元组(小白新手学习内容四之元组)
在python中,可以将元组看成一种特殊的列表。唯一与列表不同的是,元组内的数据元素是不可以修改的。当开发者需要创建一组不可改变的数据时,通常会把这些放在一个元组中。6.使用内置方法操作元组 在python中可以使用内置方法来操作元组。max(tuple): 返回元组中的最大值。min(tuple): 返回元组中的最小值。len(tuple): 计算元组中的个数。tuple(seq): 将列表转换为元组。下面是元组的具体实例。
2022-09-18 09:45:14 321
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人