概述
HashMap是基于哈希表的Map接口的非同步实现。元素以键值对的形式存放,并允许null键和null值,对key值唯一,因此,null键只有一个。另外,hashmap不保证元素存储的顺序,是一种无序的,和放入的顺序并不相同(此类不保证映射的顺序,特别是它不保证该顺序恒久不变)。HashMap是线程不安全的。
1、前提须知(数组,链表、红黑树)
1.1 数组:
数组开辟的内存空间是需要联系的,因此每个元素都有自己的下标 可以通过下标直接获取到对应的元素 如果是增删操作的时候,就要移动后面的所有元素,并且在扩容的时候 需要重新创建一个新的数组 再将原来的数组赋值进去特别的赋值 总结起来就是 数组查询效率快,增删性能滴
1.2 链表:
链表结构位置则是分散的 他是通过 指针来指向下一个node对象,因此没有下标 也就不能像数组那样直接通过下标直接获取数据,每一次查询的时候都需要重头开始查找,就比如说我需要查找最后一条数据 只能通过重头开始查一直到指针为空的时候 才获取到最后一个node对象,但是增删性能会比数组快,只需要改变node节点中的指针指向即可 总结起来:链表增删快 查询低
1.3 红黑树
红黑树(Red Black Tree
) 是一种自平衡二叉查找树。JDK1.8中,当HashMap的链表达到一定长度后,会将链表转化为红黑树。就是用来进行 链表的查询性能低的情况
2、HashMap继承关系图
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 数组的默认初始容量
static final int MAXIMUM_CAPACITY = 1 << 30; //数组的最大长度限制
static final float DEFAULT_LOAD_FACTOR = 0.75f; //默认负载因子
static final int TREEIFY_THRESHOLD = 8; //链表长度 大于8 转换为红黑树
static final int UNTREEIFY_THRESHOLD = 6; //红黑树小于6 转换为链表
static final int MIN_TREEIFY_CAPACITY = 64; //转换红黑树的另一个必要条件 数组长度大于64
transient Node<K,V>[] table; //table 数组
transient int size; //table表的长度大小
transient int modCount; //修改次数 替换不算
final float loadFactor; //指定负载因子
由下图可知 hashmap底层是基于数组实现 数组中每一个对象是一个链表对象 在new的时候 他才会去初始化一个数组
3 HashMap的数据存储结构
1.7的时候HashMap通过数组 链表实现的 在1.8的时候 HashMap通过数组 链表 红黑树实现的
HashMap中通过table数组来存入keyValue的 而每一个键值对在put的时候 都会创建一个node节点,Node节点实际上是一个单向的链表结构,它具有Next指针,可以连接下一个Node节点,以此来解决Hash冲突的问题。
transient Node<K,V>[] table; //table 数组
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; //该node节点的hash值
final K key; //put中的key
V value; //put中的value
Node<K,V> next; //指针 指向下一个node节点
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
}
4、put方法源码分析
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true); //调用putval方法 传入对应的值 hash(key) 将输入的key进行一个hash运算并返回
}
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0) //判断当前的table数组是否为空 或者他的长度是否为0 并赋值给 tab 和 n 如果满足标识当前table还没有初始话长度
n = (tab = resize()).length; //扩容数组操作
if ((p = tab[i = (n - 1) & hash]) == null) //通过与运算 获取到数组下标对应的node是否为空
tab[i] = newNode(hash, key, value, null); //如果为空表示可以直接存储 将输入的key value 封装成一个node节点并存入没有造成hash冲突
else {//如果不为null 表示 出现hash冲突
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k)))) //判断key输入的key 和 冲突node的key是否相同 或者 通过equals判断具体的值是否相同
e = p; //如果满足 说明有相同的值 原来的值将会被覆盖
else if (p instanceof TreeNode) //判断当前node是否为红黑树
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//hash冲突
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) { //如果next为空说明已经到最后一个了 直接将当前输入的值封装成为一个node存入到next里面
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st //判断长度是否达到变成红黑树的阈值
treeifyBin(tab, hash); //转换红黑树
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) //覆盖
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value; //赋新值
afterNodeAccess(e);
return oldValue; //返回旧值
}
}
++modCount; //添加加1 修改不加
if (++size > threshold) //判断数组容量是否达到了扩容的阈值
resize(); //扩容操作
afterNodeInsertion(evict);
return null;
5、resize() 方法扩容源码分析
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; //赋值当前的table数组
int oldCap = (oldTab == null) ? 0 : oldTab.length; //判断当前的数组是否为空 如果为空就是还没有初始话数组赋值为0 如果不是就是已经初始化好了
int oldThr = threshold; //扩阈值
int newCap, newThr = 0; //两个变量 newCap是新的数组容量 newThr 新的扩容阈值
if (oldCap > 0) { //判断数组长度是否大于0
if (oldCap >= MAXIMUM_CAPACITY) { //判断数组的长度是否大于了最大数组长度 如果大于就不会进行扩容了
threshold = Integer.MAX_VALUE; //将整型的最大数组长度 赋值给扩容阈值
return oldTab; //返回数组
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && //newCap = oldCap << 1 将数组长度增长一倍 如果新的数组长度 小于数组最大长度并且原数组长度大于等于默认数组长度(16)
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold 扩容阈值成倍扩容
}
else if (oldThr > 0) // initial capacity was placed in threshold 判断原扩容阈值是否大于0
newCap = oldThr; //将原扩容阈值赋值给newCap
else { // zero initial threshold signifies using defaults 如果上面都不满足标识还没有初始话数组长度
newCap = DEFAULT_INITIAL_CAPACITY; //默认长度 16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); //计算扩容阈值 (数组长度*负载因子)
}
if (newThr == 0) { //判断新扩容阈值是否等于0
float ft = (float)newCap * loadFactor; //计算扩容阈值 (数组长度*负载因子)
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE); //判断新数组长度是否小于最大数组长度 并且 扩容阈值是否小于最大数组长度 都满足将扩容阈值赋值给newThr 否早 返回整形的最大值
}
threshold = newThr; //通过上面的代码 将计算出来的扩容阈值 赋值给threshold
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //创建新的数组 长度是上面代码给的
table = newTab; //赋值给原数组
if (oldTab != null) { //判断当前数组是否为null 如果是null 证明当前的数组还没有被初始化 如果不为null 说明当前数组里面有数据
for (int j = 0; j < oldCap; ++j) { //遍历原数组长度
Node<K,V> e; //临时node节点
if ((e = oldTab[j]) != null) { //将下标对应的node 赋值给e的同时判断是否为空
oldTab[j] = null; //将下标对应的node数据设置为空 方便回收
if (e.next == null) //判断当前node节点的next是否为空 如果为空 代表还没有出现hash冲突
newTab[e.hash & (newCap - 1)] = e; //通过与运算 算出下标 存入
else if (e instanceof TreeNode) //判断当前元素是否 变成红黑树
((TreeNode<K,V>)e).split(this, newTab, j, oldCap); //红黑树存储数据
else { // preserve order
//上面都没有满足 那就是链表并且出现了hash冲突
//低位链表
Node<K,V> loHead = null, loTail = null;
//高位链表
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next; //将当前node的next赋值给next对象
//判断当前node的hash 与运算 全数组长度oldcap的长度是否等于0
/**
* 比如 hash=> 11111 or 01111
oldcap=>10000
要么是0 要么就是1
**/
if ((e.hash & oldCap) == 0) { //如果等于0 赋值低位链表 用于存入到原有下标对应的元素上
if (loTail == null)
loHead = e; //头链表
else
loTail.next = e; //指向下一个node
loTail = e;
}
else { //如果等于1 赋值给高位链表 赋值给新数组下标对应的元素上
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//将链表赋值给对应的小标位置 (新数组)
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab; //最后返回扩容后的数组
}
6、get()方法原发分析
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value; //调用getNode方法 传入key的hash值 以及 key 并将返回的对象.value返回给e
}
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
//tab 数组 first头节点 e链表 n长度
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) { //判断当前的数组 是否不为null 并且长度大于0 有并且 通过与运算 算出下标对应的元素是否不为空
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k)))) //判断头节点hash是否相同 并且key的值相同
return first; //返回头节点
if ((e = first.next) != null) { //判断当前头节点的next是否不为空
if (first instanceof TreeNode) //判断头节点是否为红红黑树
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {//通过循环找到对应的node节点并返回
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
7、remove()方法源码分析
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ? //将key进行hash运算调用remove方法
null : e.value;
}
/**
* Implements Map.remove and related methods
*
* @param hash hash for key key的hash值
* @param key the key key
* @param value the value to match if matchValue, else ignored value值
* @param matchValue if true only remove if value is equal //如果为true key和value都要判断
* @param movable if false do not move other nodes while removing
* @return the node, or null if none
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) { //判断当前的数组 是否不为null 并且长度大于0 有并且 通过与运算 算出下标对应的元素是否不为空
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k)))) //判断头节点的hash和输入的hash是否相同以及key值比较是否都相同
node = p; //将头节点赋值给node对象
else if ((e = p.next) != null) { //判断链表是否不为空
if (p instanceof TreeNode) //判断是否转化为红黑树
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do { //通过循环获取到对应符合条件的元素 赋值给node
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) { //判断node是否不为空 并且是否需要判断value是否一直
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); //以红黑树的形式去除
else if (node == p) //头节点删除
tab[index] = node.next;
else
p.next = node.next; //链表删除 p.next对应的是node 删除node 就是 p.next对应node.next
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
8、红黑树源码分析
后续更新.....