- 博客(5)
- 收藏
- 关注
原创 linux
挂载盘 mount -t nfs -o vers=3,proto=tcp,rsize=1048576,wsize= 1048576,hard,intr,timeo=50 172.16.100.250:/250_39T_2 /media/cdrom_1/创建、切换环境 conda env list conda activate。
2023-07-28 14:24:41 135 1
原创 大模型相关算法
Segment Anything Model (SAM) overview. A heavyweight image encoder outputs an image embedding that can then be efficiently queried by a variety of input prompts to produce object masks at amortized real-time speed. For ambiguous prompts corresponding to mo
2023-07-21 20:18:34 239 3
原创 yolov1-yolov5
总的来说,各个版本的YOLO都有其独特的优势和缺点,不同版本的改进主要集中在网络结构、处理方式、预训练方法、激活函数、数据扩增等方面,目的是提高检测精度、减少误报率,实现更快速的目标检测和更好的定位能力。YOLO算法从2015年首次发表的版本v1到目前为止的最新版本v5,历经了多次改进和升级。
2023-06-20 17:33:36 533
原创 cnn和transformer区别
计算复杂度:相比于CNN,Transformer计算复杂度相对较高,因为自注意力机制需要计算所有序列位置之间的相似度,不能利用卷积等局部计算方法,因此在处理较长序列时,可能会遇到计算资源或时间上的瓶颈。transformer在大规模的数据集上做预训练的话,那么我们就可以让一个标准的transformer,不在视觉上做更改,即可取的超越或同等目前最强cnn的效果。特征提取方式:CNN通过一系列卷积和降采样操作,提取图像等数据的空间特征,而Transformer则利用自注意力机制提取序列数据中的语义特征。
2023-06-20 14:14:24 5331
原创 过拟合及欠拟合处理
过拟合是深度学习中常见的问题之一,它指的是模型在训练数据上表现良好,但在测试数据上表现很差的情况。二是可以有效地提高训练效果,获取更好的结果。这些方法并不一定全部适用于所有的模型和任务,要视具体情况而定,进行选择和实验,以获得最好的结果。Dropout:在神经网络中,随机丢弃一些节点,可以减少模型对某些特征的依赖,从而减少过拟合。早停法:在训练过程中,通过比较验证集损失函数值的变化,及时停止训练,可以避免过拟合。正则化:通过对网络模型添加 L1/L2 正则化项,可以让模型更加平滑,减少过拟合。
2023-06-14 16:04:31 245 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人