- 博客(15)
- 收藏
- 关注
原创 【本周学习】光学字符识别(OCR)
光学字符识别最早是指针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术,现在已经拓展为通过深度学习等技术对图像中的字符内容进行检测,返回文本内容和文本所在图片中的位置信息,通常为四个边界的坐标(后一段解释为个人理解)。 .........
2022-06-17 13:11:16 3542
原创 【自动划分数据集】提供图片与标签(.txt)文件即可自动生成YOLO格式数据集
"""input:1.img_path 数据集图片地址2.label_path 数据集标签地址(.txt格式)3.划分比例(0到1) split_rateoutput:--dataset --images --train --val --labels --train --val"""import osimport randomimport shutildef get_imlist(path): r.
2022-05-16 14:03:04 1004
原创 孪生网络代码改动2(增加自动打标与准确率验证模块)
主模块:only show accuracy:如果输入 y ,仅验证分类结果的最准确率,默认标签地址为output/mac(DAGM)/2022_05_01 01_51_04,均可自行调整[0]model path: 默认地址model path: logs/mac_5/ep098-loss0.000-val_loss0.002.pth,注意加载网络权重后,记得调整siamese.py中的input_shape[1]待检测图片文件夹(query set)地址:[2]待检测图片,support.
2022-05-11 10:20:14 828
原创 【效果展示】面部追踪+情绪识别
1.使用yolov5(目标检测网络)作为脸部定位模块首先标注出人脸,达到去冗余的效果2.使用先前博客中提到的多模态迁移视觉网络作为情绪识别模块,对yolov5检测为人脸的框内图像进行判别,达到更为精确的情绪识别效果,同时实现了一张图片中多个人物的情绪识别。以下为效果图:...
2022-04-22 23:54:31 3169 7
原创 孪生网络代码改动
bubbliiiing/Siamese-pytorch: 这是一个孪生神经网络(Siamese network)的库,可进行图片的相似性比较。 (github.com)https://github.com/bubbliiiing/Siamese-pytorch以上是原始代码地址:站在巨人的肩膀上!1. 对predict.py的改动: 可对比多幅图片,从而达到分类的效果# -*- coding:utf-8 -*-from function import *from PIL import Imag
2022-04-21 01:14:22 2216 5
原创 Yolov5官方网络改进:增加search模块(基于迁移学习的目标检测+多模态零样本自定义标签分类网络)
import argparseimport datetimeimport sysimport timefrom pathlib import Pathimport cv2import numpy as npimport torchimport torch.backends.cudnn as cudnnfrom numpy import random# from ResNet import *from lib.Models.experimental import attempt_loa.
2022-04-09 19:22:46 2717 9
原创 根据检测算法得到的txt文件,批量截取目标框图保存
# -*- coding: utf-8 -*-import osimport cv2def bboxcut(): # input path inputPath = input('input path:') if inputPath == '': inputPath = r'D:/GitHub/DATASET/data-coco128/images/train2017' inputPath = str(inputPath) print(f'in.
2022-04-07 15:09:32 539
原创 记录配置windows与ubantu双系统深度学习环境的踩坑
1.常规解决方案安装git出现以上问题,按照网上的惯例可采用命令:sudo apt-get update or sudo apt-get upgrade2.结果还是报错,返回重试apt-get update/upgrade命令,发现部分程序安装失败。分析后是镜像下载源的问题换回官方下载源后输入sudo apt-get update or sudo apt-get upgrade重新更新,再次输入sudo apt-get install git即可下载成功。......
2022-03-21 09:15:00 1728
原创 去雾模块dehaze.py(可直接调用)
"""1.去雾算法介绍博客:http://blkstone.github.io/2015/08/20/single-image-haze-removal-using-dark-channel/2.论文地址(2009 CVPR best paper):https://paperswithcode.com/paper/single-image-haze-removal-using-dark-channel3.资源下载(镜像)地址:pip install [The Package You Want .
2022-03-10 16:25:38 5540 4
原创 【多模态学习】本周学习历程,附链接
越学习,越是觉得所谓研究生不过是站在巨人的肩膀上领略科学之海的壮丽,十分荣幸能在开源精神的引领下参与到知识的传递网络中♪(^∇^*) 现如今,多模态学习可谓是方兴未艾,不要被多模态这个概念唬住,模态可以近似理解为视觉、听觉或触觉等不同的感受,深度学习中的多模态学习好之于计算机就好比是五感之于人类。从Bert与ViT开始,这把火彻底烧到了CV领域,Transformer架构渐有取代CNN之势,像
2022-03-06 21:39:52 3317
原创 暗通道去雾(何恺明的成名作):简洁与效果并存的传统图像处理算法
本篇博客主要作用为学习代码段与快应用的使用,内容浅显,还请路过的大佬见谅>_< 暗通道去雾算法(Single image haze removal using dark channel prior)可以说是恺明大佬厚积薄发之作,作为其博士期间的第一篇投稿作品,可谓出道即触及巅峰,一举斩获CVPR2009最佳论文奖。1.论文链接:https://ieeexplore.ieee.org/document/52065152.论文的知识图谱链接:...
2022-03-06 20:52:05 8465 3
原创 CLIP:基于自然语言监督信号的迁移视觉模型
2月25月随笔: 最近在关注自动标注领域的工作,发现了一篇有趣的文章:openai的多模态对比学习《基于自然语言监督信号的迁移视觉网络模型》,在imagenet 上zero shot 效果和有监督训练好的ResNet 50媲美(⊙o⊙) 其实从bert 开始,自然语言处理和计算机视觉的结合就势不可挡,之后的各种vision transform 更是如同雨后春笋,但clip 是第一次把图片与文字的结合做到了极致。 原理简单有效:有n个图片文本对,使用编码器分别提取出n个文...
2022-02-25 21:34:52 1965 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人