在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
说明:
如果题目有解,该答案即为唯一答案。
输入数组均为非空数组,且长度相同。
输入数组中的元素均为非负数。
示例 1:
输入:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引
想要高效解决此题需要两个“经验”:(1)若从以x站为起点,到y站时油不够,则以x~y中间任意一站都不能作为起点。(2)在满足第一条条件下,再满足”总油量大于等于总消耗“的条件,只需要保证新的起点到达加油站总长度的点(即遍历终点cost.length)即可满足“从新起点出发可回到新起点”
证明(1):若从以x站为起点,到y站时油不够,即为x~y总油量<总消耗,且设其任意中间点a,x ~a总油量大于总消耗,则必有a ~y的总油量小于总消耗,故以a为起点一定到不了y.
(2)反证法:满足总油量>总消耗的前提下,若新起点N可最初的起点0,则必定有N~0的总油量大于总消耗,若0 ~ N中有一点k,使N ~k 总油量<总消耗,则必有k ~ N 总油量>总消耗,那么N就不会被选为起点,故有矛盾,可得证。
因此可得代码:
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int total = 0, sum = 0, start = 0;
for (int i = 0; i < gas.length; ++i) {
total += gas[i] - cost[i];
sum += gas[i] - cost[i];
if (sum < 0) {
start = i + 1;
sum = 0;
}
}
return (total < 0) ? -1 : start;
}
}