NLP 学习笔记 02 Tagging Problems and Hidden Markov Models

               

(all content based on the coursera course nlp)

--------------------------------------------------------------------------------------------------------

这一周的主要课程是tagging problems

首先是简单介绍了一下supervised learning problem,则是机器学习中的基础了,请参看我写的其他的笔记

介绍了两个模型

Conditional models:

    我们从对样例的学习得到一个分布:p(y|x),然后用这个分布来对我们新的数据进行标记

                           

     可以很直观地感觉到这个分布的意义:给定一个数据x,它的标记为y的概率。

Generative Models:

     我们从样例中学习到一个分布p(x,y),因为有

     所以:

                        

      对这个模型的直观感受就是:标记y的概率乘以标记y生成数据x的概率,所以它叫做生产模型


Trigram Hidden Markov Models (Trigram HMMs)

      对于一句话x,我们对其标记为y,对其用Generative Models进行定义:

          

      那么最有可能的标记y就是:

              

      使用HMM对p(x,y)进行定义,使用trigram模型,则有:

              

       其中的q是在之前笔记定义了的parameter

       e(xi | yi)表示标记yi生产xi的概率,一般对样例中得数据进行统计就行了,它等于(xi标记为yi的数量) / (标记yi的数量).

       即是:

               

Dealing with Low-Frequency Words

      这个模型一个显著的缺点就是有些词出现的次数极少,那么课程给出的一个解决方法就是对出现次数少的词语进行分类,把分到一类的词语都用特定单词表示,这样出现次数累积起来就多了。

      比如说:

       

       分类完成后将所有的两位数字换成 twoDigitNum,四位数字换成fourDigitNum,诸如此类,然后把训练数据中的都替换掉,这样将它们的出现次数累积起来,次数自然就变多了。

The Viterbi Algorithm

       定义号这样一个模型之后,我们要解决的问题就是用一个算法来得到结果

       单纯的枚举在这里明显是不明智的,这里介绍一个Viterbi Algorithm,实际上是一个动态规划算法,理解起来并不难

      首先定义:

             

              Sk表示的是在位置k可选的标号,0和-1自然只能选开始符号,其它可以任意选择所有的标号

       定义:

           

             这是对上面的一个重定义,换了个符号而已。

       定义:

               

             π(k,u,v)是在位置k,以u,v结尾的最大的概率,也就是时的最大概率

       算法:

             在π上进行动态规划算法,通过最开始最明显的(下式)进行递推

             

             推导式为:

                

             我想这个理解起来应该是不难的吧2,一个动态规划而已,下面是伪代码:

              

             其时间复杂度是,效率还是不错的。

           
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值