算法导论 之 平衡二叉树 - 删除 - 递归 C语言

               


1 前言

  在之前的博文《算法导论 之 平衡二叉树 - 插入》和《算法导论 之 平衡二叉树 - 打印》中已经给出了创建、插入、查询、打印以及销毁平衡二叉树的C语言实现过程,在此篇中出现的一些结构体、宏、枚举、函数等相关定义可以到以上两篇中找到。之所以现在才来写平衡二叉树的删除操作,主要是其过程相对比较复杂,且测试和实现过程中出现了各种各样的问题。


2 处理思路

  虽然平衡二叉树的结点删除操作的代码比较复杂,但是经过认真分析后,可以发现删除过程只有以下3种情况:[注:只要牢牢把握住以下3点,理解并实现平衡二叉树的删除操作不是太难]

2.1 被删的结点是叶子结点

处理思路:

  ①、将该结点直接从树中删除;

  ②、其父节点的子树高度的变化将导致父结点平衡因子的变化,通过向上检索并推算其父结点是否失衡;

  ③、如果其父结点未失衡,则继续向上检索推算其父结点的父结点是否失衡...如此反复②的判断,直到根结点;如果向上推算过程中发现了失衡的现象,则进行④的处理;

  ④、如果其父结点失衡,则判断是哪种失衡类型[LL、LR、RR、RL],并对其进行相应的平衡化处理。如果平衡化处理结束后,发现与原来以父节点为根结点的树的高度发生变化,则继续进行②的检索推算;如果与原来以父结点为根结点的高度一致时,则可说明父结点的父结点及祖先结点的平衡因子将不会有变化,因此可以退出处理;[注意:删除操作时的LL和RR型与插入操作的LL和RR型的判断有一点小区别,那就是删除操作中,当node->lchild或node->rchild的平衡因子为AVL_EH时,也进行LL或RR操作]

举例说明:

  假设现在要删除叶子结点D,如图1所示。首先,将D从树中删除,再判断其父结点C是否失衡,如果失衡则进行平衡化处理;再判断C的父结点B是否失衡,如果失衡则进行平衡化处理;再判断B的父结点A是否失衡,如果失衡则....依此类推,直到根结点或高度不再变化为止。


图1 叶子结点


2.2 被删的结点只有左子树或只有右子树

处理思路:

  ①、将左子树(右子树)替代原有结点C的位置;

  ②、结点C被删除后,则以C的父结点B为起始推算点,依此向上检索推算各结点(父、祖先)是否失衡;

  ③、如果其父结点未失衡,则继续向上检索推算其父结点的父结点是否失衡...如此反复②的判断,直到根结点;如果向上推算过程中发现了失衡的现象,则进行④的处理;

  ④、如果其父结点失衡,则判断是哪种失衡类型[LL、LR、RR、RL],并对其进行相应的平衡化处理。如果平衡化处理结束后,发现与原来以父节点为根结点的树的高度发生变化,则继续进行②的检索推算;如果与原来以父结点为根结点的高度一致时,则可说明父结点的父结点及祖先结点的平衡因子将不会有变化,因此可以退出处理;[注意:删除操作时的LL和RR型与插入操作的LL和RR型的判断有一点小区别,那就是删除操作中,当node->lchild或node->rchild的平衡因子为AVL_EH时,也进行LL或RR操作]


图2 只有左子树 或 只有右子树

2.3 被删的结点既有左子树又有右子树

处理思路:

  ①、找到被删结点C和替代结点R(结点C的前继结点或后继结点 —— 在此选择前继);

  ②、将替代结点R的值赋给结点C,再把替代结点R的左孩子RL替换替代结点R的位置,最后把替代结点R的空间释放掉;[注意:最终删除的是替代结点R,而之前要求被删除的结点C并未被删除 - 原因:通过修改结点C的值达到结点C和结点R的替换]

  ③、替代结点R被删除后,则以R的父结点E为起始推算点,依此向上检索推算父结点或祖先结点是否失衡;

  ④、如果其父结点未失衡,则继续向上检索推算其父结点的父结点是否失衡...如此反复③的判断,直到根结点;如果向上推算过程中发现了失衡的现象,则进行⑤的处理;

  ⑤、如果其父结点失衡,则判断是哪种失衡类型[LL、LR、RR、RL],并对其进行相应的平衡化处理。如果平衡化处理结束后,发现与原来以父节点为根结点的树的高度发生变化,则继续进行②的检索推算;如果与原来以父结点为根结点的高度一致时,则可说明父结点的父结点及祖先结点的平衡因子将不会有变化,因此可以退出处理;[注意:删除操作时的LL和RR型与插入操作的LL和RR型的判断有一点小区别,那就是删除操作中,当node->lchild或node->rchild的平衡因子为AVL_EH时,也进行LL或RR操作]


图3 既有左子树 又有右子树


3 代码实现

/****************************************************************************** **函数名称: avl_delete **功    能: 删除key值结点(对外接口) **输入参数:  **     tree: 平衡二叉树 **     key: 被删除的关键字 **输出参数: NONE **返    回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述:  **注意事项:  **作    者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_delete(avl_tree_t *tree, int key){    bool lower = false; /* 记录高度是否降低 */    if (NULL == tree->root) {        return AVL_SUCCESS;    }    return _avl_delete(tree, tree->root, key, &lower);}

代码1 删除结点(外部接口)

/****************************************************************************** **函数名称: _avl_delete **功    能: 在以node为根结点的子树中删除指定的key值结点(内部接口) **输入参数:  **     tree: 平衡二叉树 **     node: 以node为根结点的子树 **     key: 被删除的关键字 **输出参数:  **     lower: 高度是否降低 **返    回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述:  **注意事项:  **作    者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int _avl_delete(avl_tree_t *tree, avl_node_t *node, int key, bool *lower){    avl_node_t *parent = node->parent;    /* 1. 查找需要被删除的结点 */    if (key < node->key) {      /* 左子树上查找 */        if (NULL == node->lchild) {            return AVL_SUCCESS;        }                _avl_delete(tree, node->lchild, key, lower);        if (true == *lower) {            return avl_delete_left_balance(tree, node, lower);        }        return AVL_SUCCESS;    }    else if (key > node->key) { /* 右子树上查找 */        if (NULL == node->rchild) {            return AVL_SUCCESS;        }                _avl_delete(tree, node->rchild, key, lower);        if (true == *lower) {            return avl_delete_right_balance(tree, node, lower);        }        return AVL_SUCCESS;    }    /* 2. 已找到将被删除的结点node */    /* 2.1 右子树为空, 只需接它的左子树(叶子结点也走这) */    if (NULL == node->rchild) {        *lower = true;        avl_instead_child(tree, parent, node, node->lchild);        free(node), node = NULL;        return AVL_SUCCESS;    }    /* 2.2 左子树空, 只需接它的右子树 */    else if (NULL == node->lchild) {        *lower = true;        avl_instead_child(tree, parent, node, node->rchild)        free(node), node=NULL;        return AVL_SUCCESS;    }    /* 2.3 左右子树均不为空: 查找左子树最右边的结点 替换被删的结点 */    avl_instead_and_delete(tree, node, node->lchild, lower);    if (true == *lower) {        return avl_delete_left_balance(tree, node, lower);    }    return AVL_SUCCESS;}

代码2 查找并删除结点(内部接口)

/****************************************************************************** **函数名称: avl_instead_and_delete **功    能: 找到替换结点, 并替换被删除的结点(内部接口) **输入参数:  **     tree: 平衡二叉树 **     node: 将被删除的结点 **     prev: 前继结点:此结点最右端的结点将会用来替换被删除的结点. **输出参数:  **     lower: 高度是否变化 **返    回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述:  **注意事项:  **     注:在此其实并不会删除node, 而是将prev的值给了node, 再删了prev. **         因为在此使用的递归算法, 如果真把node给释放了,会造成压栈的信息出现错误! **作    者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_instead_and_delete(avl_tree_t *tree, avl_node_t *node, avl_node_t *prev, bool *lower){    if (NULL == instead->rchild) {        *lower = true;                node->key = prev->key;    /* 注: 将prev的值给了node */        if (prev == node->lchild) {            avl_set_lchild(node, prev->lchild);            /* prev->parent == node结点可能失衡,此处理交给前栈的函数处理 */        }        else {            avl_set_rchild(prev->parent, prev->lchild);            /* prev的父结点可能失衡,此处理交给前栈的函数处理 */        }        free(prev), prev=NULL;    /* 注意: 释放的不是node, 而是释放prev */        return AVL_SUCCESS;    }    avl_instead_and_delete(tree, node, prev->rchild, lower);    if (true == *lower) {        /* node的父结点可能失衡,此处理交给前栈的函数处理            但prev可能失衡,因此必须在此自己处理 */        avl_delete_right_balance(tree, prev, lower);    }    return AVL_SUCCESS;}

代码3 替换并删除结点(内部接口)

/****************************************************************************** **函数名称: avl_delete_left_balance **功    能: 结点node的左子树某结点被删除, 左高度降低后, 平衡化处理(内部接口) **输入参数:  **     tree: 平衡二叉树 **     node: 结点node的左子树的某个结点已被删除 **输出参数:  **     lower: 高度是否变化 **返    回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述:  **注意事项:  **作    者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_delete_left_balance(avl_tree_t *tree, avl_node_t *node, bool *lower){    avl_node_t *rchild = NULL, *rlchild = NULL, *parent = node->parent;    switch (node->bf) {        case AVL_LH:    /* 左高: 左子树高度减1 树变矮 */        {            node->bf = AVL_EH;            *lower = true;            break;        }        case AVL_EH:    /* 等高: 左子树高度减1 树高度不变 */        {            node->bf = AVL_RH;            *lower = false;            break;        }        case AVL_RH:    /* 右高: 左子树高度减1 树失去平衡 */        {            rchild = node->rchild;            switch (rchild->bf) {                case AVL_EH:    /* RR型: 向左旋转 - 区别:插入操作时对AVL_EH不做处理 */                case AVL_RH:    /* RR型: 向左旋转 */                {                    if (AVL_EH == rchild->bf) {                        *lower = false;                        rchild->bf = LH;                        node->bf = AVL_RH;                    }                    else { /* AVL_RH == rchild->bf */                        *lower = true;                        rchild->bf = AVL_EH;                        node->bf = AVL_EH;                    }                    avl_set_rchild(node, rchild->lchild);                    avl_set_lchild(rchild, node);                    avl_instead_child(tree, parent, node, rchild);                    break;                }                case AVL_LH:    /* RL型: 先向右旋转 再向左旋转 */                {                    *lower = true;                    rlchild = rchild->lchild;                    switch (rlchild->bf) {                        case AVL_LH:                        {                            node->bf = AVL_EH;                            rchild->bf = AVL_RH;                            rlchild->bf = AVL_EH;                            break;                        }                        case AVL_EH:                        {                            node->bf = AVL_EH;                            rchild->bf = AVL_EH;                            rlchild->bf = AVL_EH;                            break;                        }                        case AVL_RH:                        {                            node->bf = AVL_LH;                            rchild->bf = AVL_EH;                            rlchild->bf = AVL_EH;                            break;                        }                    }                    avl_set_rchild(node, rlchild->lchild);                    avl_set_lchild(rchild, rlchild->rchild);                    avl_set_lchild(rlchild, node);                    avl_set_rchild(rlchild, rchild);                     avl_instead_child(tree, parent, node, rlchild);                    break;                }            }            break;        }    }    return AVL_SUCCESS;}
代码4 左子树高度降低后平衡化处理

/****************************************************************************** **函数名称: avl_delete_right_balance **功    能: 结点node的右子树某结点被删除, 左高度降低后, 平衡化处理(内部接口) **输入参数:  **     tree: 平衡二叉树 **     node: 结点node的右子树的某个结点已被删除 **输出参数:  **     lower: 高度是否变化 **返    回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述:  **注意事项:  **作    者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_delete_right_balance(avl_tree_t *tree, avl_node_t *node, bool *lower){    avl_node_t *lchild = NULL, *lrchild = NULL, *parent = node->parent;    switch (node->bf) {        case AVL_LH:    /* 左高: 右子树高度减1 树失去平衡 */        {            lchild = node->lchild;            switch (lchild->bf) {                case AVL_EH:    /* LL型: 向右旋转 - 区别:插入操作时,对AVL_EH不做处理 */                case AVL_LH:    /* LL型: 向右旋转 */                {                    if (AVL_EH == lchild->bf) {                        *lower = false;                        lchild->bf = AVL_RH;                        node->bf = AVL_LH;                    }                    else { /* AVL_LH == lchild->bf */                        *lower = true;                        lchild->bf = AVL_EH;                        node->bf = AVL_EH;                    }                    avl_set_lchild(node, lchild->rchild);                    avl_set_rchild(lchild, node);                     avl_instead_child(tree, parent, node, lchild);                    break;                }                case AVL_RH:    /* LR型: 先向左旋转 再向右旋转 */                {                    *lower = true;                    lrchild = lchild->rchild;                    switch (lrchild->bf) {                        case AVL_LH:                        {                            node->bf = AVL_RH;                            lchild->bf = AVL_EH;                            lrchild->bf = AVL_EH;                            break;                        }                        case AVL_EH:                        {                            node->bf = AVL_EH;                            lchild->bf = AVL_EH;                            lrchild->bf = AVL_EH;                            break;                        }                        case AVL_RH:                        {                            node->bf = AVL_EH;                            lchild->bf = AVL_LH;                            lrchild->bf = AVL_EH;                            break;                        }                    }                    avl_set_lchild(node, lrchild->rchild);                    avl_set_rchild(lchild, lrchild->lchild);                    avl_set_rchild(lrchild, node);                    avl_set_lchild(lrchild, lchild);                    avl_instead_child(tree, parent, node, lrchild);                    break;                }            }            break;        }        case AVL_EH:    /* 等高: 右子树高度减1 树高度不变 */        {            node->bf = AVL_LH;            *lower = false;            break;        }        case AVL_RH:    /* 右高: 右子树高度减1 树变矮 */        {            node->bf = AVL_EH;            *lower = true;            break;        }    }    return AVL_SUCCESS;}

代码5 右子树高度降低后 平衡化处理

/****************************************************************************** **函数名称: avl_assert **功    能: 检测结点是否正常 **输入参数:  **     node: 被检测的结点 **输出参数: NONE **返    回: VOID **实现描述:  **注意事项:  **     注:在增加或删除结点的过程中,会有很多指针的操作,稍不谨慎,可能就会出现严重问题。 **         随着插入或删除的过程,树的结构不断调整和变化,要想通过肉眼和GDB查看树内部结构 **         是否正常,这将变得越来越困难。但是通过调用此函数,可快速判断出当前结点的相关 **         指针信息是否正常,一旦出现异常,则会直接coredump,再通过GDB便可快速的找出 **         错误代码。 **作    者: # Qifeng.zou # 2013.12.20 # ******************************************************************************/void avl_assert(const avl_node_t *node){    if((NULL == node)        || (NULL == node->parent))     {        return;    }    if((node->parent->lchild != node)           /* 检查父子关系是否正常 */        && (node->parent->rchild != node))     {        assert(0);    }    if((node->parent == node->lchild)           /* 检查是否存在环行链表 */        || (node->parent == node->rchild))    {        assert(0);    }}

代码6 结点检测

4 结果展示

  左图为原始平衡二叉树,随机删除多个结点后,得到右图。通过观察可知右图依然是一棵平衡二叉树。


图4 测试结果



           
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值