- 作者:邹祁峰
- 邮箱:Qifeng.zou.job@hotmail.com
- 博客:http://blog.csdn.net/qifengzou
- 日期:2013.12.20 12:00
- 转载请注明来自"祁峰"的CSDN博客
1 前言
在之前的博文《算法导论 之 平衡二叉树 - 插入》和《算法导论 之 平衡二叉树 - 打印》中已经给出了创建、插入、查询、打印以及销毁平衡二叉树的C语言实现过程,在此篇中出现的一些结构体、宏、枚举、函数等相关定义可以到以上两篇中找到。之所以现在才来写平衡二叉树的删除操作,主要是其过程相对比较复杂,且测试和实现过程中出现了各种各样的问题。
2 处理思路
2.1 被删的结点是叶子结点
处理思路:
①、将该结点直接从树中删除;
②、其父节点的子树高度的变化将导致父结点平衡因子的变化,通过向上检索并推算其父结点是否失衡;
③、如果其父结点未失衡,则继续向上检索推算其父结点的父结点是否失衡...如此反复②的判断,直到根结点;如果向上推算过程中发现了失衡的现象,则进行④的处理;
④、如果其父结点失衡,则判断是哪种失衡类型[LL、LR、RR、RL],并对其进行相应的平衡化处理。如果平衡化处理结束后,发现与原来以父节点为根结点的树的高度发生变化,则继续进行②的检索推算;如果与原来以父结点为根结点的高度一致时,则可说明父结点的父结点及祖先结点的平衡因子将不会有变化,因此可以退出处理;[注意:删除操作时的LL和RR型与插入操作的LL和RR型的判断有一点小区别,那就是删除操作中,当node->lchild或node->rchild的平衡因子为AVL_EH时,也进行LL或RR操作]
举例说明:
假设现在要删除叶子结点D,如图1所示。首先,将D从树中删除,再判断其父结点C是否失衡,如果失衡则进行平衡化处理;再判断C的父结点B是否失衡,如果失衡则进行平衡化处理;再判断B的父结点A是否失衡,如果失衡则....依此类推,直到根结点或高度不再变化为止。
图1 叶子结点
2.2 被删的结点只有左子树或只有右子树
处理思路:
①、将左子树(右子树)替代原有结点C的位置;
②、结点C被删除后,则以C的父结点B为起始推算点,依此向上检索推算各结点(父、祖先)是否失衡;
③、如果其父结点未失衡,则继续向上检索推算其父结点的父结点是否失衡...如此反复②的判断,直到根结点;如果向上推算过程中发现了失衡的现象,则进行④的处理;
④、如果其父结点失衡,则判断是哪种失衡类型[LL、LR、RR、RL],并对其进行相应的平衡化处理。如果平衡化处理结束后,发现与原来以父节点为根结点的树的高度发生变化,则继续进行②的检索推算;如果与原来以父结点为根结点的高度一致时,则可说明父结点的父结点及祖先结点的平衡因子将不会有变化,因此可以退出处理;[注意:删除操作时的LL和RR型与插入操作的LL和RR型的判断有一点小区别,那就是删除操作中,当node->lchild或node->rchild的平衡因子为AVL_EH时,也进行LL或RR操作]
图2 只有左子树 或 只有右子树
2.3 被删的结点既有左子树又有右子树
处理思路:
①、找到被删结点C和替代结点R(结点C的前继结点或后继结点 —— 在此选择前继);
②、将替代结点R的值赋给结点C,再把替代结点R的左孩子RL替换替代结点R的位置,最后把替代结点R的空间释放掉;[注意:最终删除的是替代结点R,而之前要求被删除的结点C并未被删除 - 原因:通过修改结点C的值达到结点C和结点R的替换]
③、替代结点R被删除后,则以R的父结点E为起始推算点,依此向上检索推算父结点或祖先结点是否失衡;
④、如果其父结点未失衡,则继续向上检索推算其父结点的父结点是否失衡...如此反复③的判断,直到根结点;如果向上推算过程中发现了失衡的现象,则进行⑤的处理;
⑤、如果其父结点失衡,则判断是哪种失衡类型[LL、LR、RR、RL],并对其进行相应的平衡化处理。如果平衡化处理结束后,发现与原来以父节点为根结点的树的高度发生变化,则继续进行②的检索推算;如果与原来以父结点为根结点的高度一致时,则可说明父结点的父结点及祖先结点的平衡因子将不会有变化,因此可以退出处理;[注意:删除操作时的LL和RR型与插入操作的LL和RR型的判断有一点小区别,那就是删除操作中,当node->lchild或node->rchild的平衡因子为AVL_EH时,也进行LL或RR操作]
图3 既有左子树 又有右子树
3 代码实现
/****************************************************************************** **函数名称: avl_delete **功 能: 删除key值结点(对外接口) **输入参数: ** tree: 平衡二叉树 ** key: 被删除的关键字 **输出参数: NONE **返 回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述: **注意事项: **作 者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_delete(avl_tree_t *tree, int key){ bool lower = false; /* 记录高度是否降低 */ if (NULL == tree->root) { return AVL_SUCCESS; } return _avl_delete(tree, tree->root, key, &lower);}
/****************************************************************************** **函数名称: _avl_delete **功 能: 在以node为根结点的子树中删除指定的key值结点(内部接口) **输入参数: ** tree: 平衡二叉树 ** node: 以node为根结点的子树 ** key: 被删除的关键字 **输出参数: ** lower: 高度是否降低 **返 回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述: **注意事项: **作 者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int _avl_delete(avl_tree_t *tree, avl_node_t *node, int key, bool *lower){ avl_node_t *parent = node->parent; /* 1. 查找需要被删除的结点 */ if (key < node->key) { /* 左子树上查找 */ if (NULL == node->lchild) { return AVL_SUCCESS; } _avl_delete(tree, node->lchild, key, lower); if (true == *lower) { return avl_delete_left_balance(tree, node, lower); } return AVL_SUCCESS; } else if (key > node->key) { /* 右子树上查找 */ if (NULL == node->rchild) { return AVL_SUCCESS; } _avl_delete(tree, node->rchild, key, lower); if (true == *lower) { return avl_delete_right_balance(tree, node, lower); } return AVL_SUCCESS; } /* 2. 已找到将被删除的结点node */ /* 2.1 右子树为空, 只需接它的左子树(叶子结点也走这) */ if (NULL == node->rchild) { *lower = true; avl_instead_child(tree, parent, node, node->lchild); free(node), node = NULL; return AVL_SUCCESS; } /* 2.2 左子树空, 只需接它的右子树 */ else if (NULL == node->lchild) { *lower = true; avl_instead_child(tree, parent, node, node->rchild) free(node), node=NULL; return AVL_SUCCESS; } /* 2.3 左右子树均不为空: 查找左子树最右边的结点 替换被删的结点 */ avl_instead_and_delete(tree, node, node->lchild, lower); if (true == *lower) { return avl_delete_left_balance(tree, node, lower); } return AVL_SUCCESS;}
/****************************************************************************** **函数名称: avl_instead_and_delete **功 能: 找到替换结点, 并替换被删除的结点(内部接口) **输入参数: ** tree: 平衡二叉树 ** node: 将被删除的结点 ** prev: 前继结点:此结点最右端的结点将会用来替换被删除的结点. **输出参数: ** lower: 高度是否变化 **返 回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述: **注意事项: ** 注:在此其实并不会删除node, 而是将prev的值给了node, 再删了prev. ** 因为在此使用的递归算法, 如果真把node给释放了,会造成压栈的信息出现错误! **作 者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_instead_and_delete(avl_tree_t *tree, avl_node_t *node, avl_node_t *prev, bool *lower){ if (NULL == instead->rchild) { *lower = true; node->key = prev->key; /* 注: 将prev的值给了node */ if (prev == node->lchild) { avl_set_lchild(node, prev->lchild); /* prev->parent == node结点可能失衡,此处理交给前栈的函数处理 */ } else { avl_set_rchild(prev->parent, prev->lchild); /* prev的父结点可能失衡,此处理交给前栈的函数处理 */ } free(prev), prev=NULL; /* 注意: 释放的不是node, 而是释放prev */ return AVL_SUCCESS; } avl_instead_and_delete(tree, node, prev->rchild, lower); if (true == *lower) { /* node的父结点可能失衡,此处理交给前栈的函数处理 但prev可能失衡,因此必须在此自己处理 */ avl_delete_right_balance(tree, prev, lower); } return AVL_SUCCESS;}
/****************************************************************************** **函数名称: avl_delete_left_balance **功 能: 结点node的左子树某结点被删除, 左高度降低后, 平衡化处理(内部接口) **输入参数: ** tree: 平衡二叉树 ** node: 结点node的左子树的某个结点已被删除 **输出参数: ** lower: 高度是否变化 **返 回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述: **注意事项: **作 者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_delete_left_balance(avl_tree_t *tree, avl_node_t *node, bool *lower){ avl_node_t *rchild = NULL, *rlchild = NULL, *parent = node->parent; switch (node->bf) { case AVL_LH: /* 左高: 左子树高度减1 树变矮 */ { node->bf = AVL_EH; *lower = true; break; } case AVL_EH: /* 等高: 左子树高度减1 树高度不变 */ { node->bf = AVL_RH; *lower = false; break; } case AVL_RH: /* 右高: 左子树高度减1 树失去平衡 */ { rchild = node->rchild; switch (rchild->bf) { case AVL_EH: /* RR型: 向左旋转 - 区别:插入操作时对AVL_EH不做处理 */ case AVL_RH: /* RR型: 向左旋转 */ { if (AVL_EH == rchild->bf) { *lower = false; rchild->bf = LH; node->bf = AVL_RH; } else { /* AVL_RH == rchild->bf */ *lower = true; rchild->bf = AVL_EH; node->bf = AVL_EH; } avl_set_rchild(node, rchild->lchild); avl_set_lchild(rchild, node); avl_instead_child(tree, parent, node, rchild); break; } case AVL_LH: /* RL型: 先向右旋转 再向左旋转 */ { *lower = true; rlchild = rchild->lchild; switch (rlchild->bf) { case AVL_LH: { node->bf = AVL_EH; rchild->bf = AVL_RH; rlchild->bf = AVL_EH; break; } case AVL_EH: { node->bf = AVL_EH; rchild->bf = AVL_EH; rlchild->bf = AVL_EH; break; } case AVL_RH: { node->bf = AVL_LH; rchild->bf = AVL_EH; rlchild->bf = AVL_EH; break; } } avl_set_rchild(node, rlchild->lchild); avl_set_lchild(rchild, rlchild->rchild); avl_set_lchild(rlchild, node); avl_set_rchild(rlchild, rchild); avl_instead_child(tree, parent, node, rlchild); break; } } break; } } return AVL_SUCCESS;}
/****************************************************************************** **函数名称: avl_delete_right_balance **功 能: 结点node的右子树某结点被删除, 左高度降低后, 平衡化处理(内部接口) **输入参数: ** tree: 平衡二叉树 ** node: 结点node的右子树的某个结点已被删除 **输出参数: ** lower: 高度是否变化 **返 回: AVL_SUCCESS:成功 AVL_FAILED:失败 **实现描述: **注意事项: **作 者: # Qifeng.zou # 2013.12.19 # ******************************************************************************/int avl_delete_right_balance(avl_tree_t *tree, avl_node_t *node, bool *lower){ avl_node_t *lchild = NULL, *lrchild = NULL, *parent = node->parent; switch (node->bf) { case AVL_LH: /* 左高: 右子树高度减1 树失去平衡 */ { lchild = node->lchild; switch (lchild->bf) { case AVL_EH: /* LL型: 向右旋转 - 区别:插入操作时,对AVL_EH不做处理 */ case AVL_LH: /* LL型: 向右旋转 */ { if (AVL_EH == lchild->bf) { *lower = false; lchild->bf = AVL_RH; node->bf = AVL_LH; } else { /* AVL_LH == lchild->bf */ *lower = true; lchild->bf = AVL_EH; node->bf = AVL_EH; } avl_set_lchild(node, lchild->rchild); avl_set_rchild(lchild, node); avl_instead_child(tree, parent, node, lchild); break; } case AVL_RH: /* LR型: 先向左旋转 再向右旋转 */ { *lower = true; lrchild = lchild->rchild; switch (lrchild->bf) { case AVL_LH: { node->bf = AVL_RH; lchild->bf = AVL_EH; lrchild->bf = AVL_EH; break; } case AVL_EH: { node->bf = AVL_EH; lchild->bf = AVL_EH; lrchild->bf = AVL_EH; break; } case AVL_RH: { node->bf = AVL_EH; lchild->bf = AVL_LH; lrchild->bf = AVL_EH; break; } } avl_set_lchild(node, lrchild->rchild); avl_set_rchild(lchild, lrchild->lchild); avl_set_rchild(lrchild, node); avl_set_lchild(lrchild, lchild); avl_instead_child(tree, parent, node, lrchild); break; } } break; } case AVL_EH: /* 等高: 右子树高度减1 树高度不变 */ { node->bf = AVL_LH; *lower = false; break; } case AVL_RH: /* 右高: 右子树高度减1 树变矮 */ { node->bf = AVL_EH; *lower = true; break; } } return AVL_SUCCESS;}
/****************************************************************************** **函数名称: avl_assert **功 能: 检测结点是否正常 **输入参数: ** node: 被检测的结点 **输出参数: NONE **返 回: VOID **实现描述: **注意事项: ** 注:在增加或删除结点的过程中,会有很多指针的操作,稍不谨慎,可能就会出现严重问题。 ** 随着插入或删除的过程,树的结构不断调整和变化,要想通过肉眼和GDB查看树内部结构 ** 是否正常,这将变得越来越困难。但是通过调用此函数,可快速判断出当前结点的相关 ** 指针信息是否正常,一旦出现异常,则会直接coredump,再通过GDB便可快速的找出 ** 错误代码。 **作 者: # Qifeng.zou # 2013.12.20 # ******************************************************************************/void avl_assert(const avl_node_t *node){ if((NULL == node) || (NULL == node->parent)) { return; } if((node->parent->lchild != node) /* 检查父子关系是否正常 */ && (node->parent->rchild != node)) { assert(0); } if((node->parent == node->lchild) /* 检查是否存在环行链表 */ || (node->parent == node->rchild)) { assert(0); }}
4 结果展示
图4 测试结果