刘二大人 PyTorch深度学习实践 笔记 P10 卷积神经网络(基础篇)

1、基本概念

  • 全连接网络: 像前几节中的用到的全是用线性层连接起来的网络层,称为全连接层。也就是线性层中的每一个输入结点都会参与下一层任何一个输出结点的计算上,这样的线性层叫做全连接层。如果整个网络都是用这种全连接层连接在一起的,那就称为全连接网络。
  • 卷积神经网络: 需要根据输入的维度映射到对应的输出的维度上。
  • 卷积: 保留图像的空间特征(全连接会丧失原有的一些空间信息)。
  • 下采样: 通道数不变,图像的高度和宽度会发生改变,目的就是减少数据量,降低运算需求。
  • 特征提取器: 包括卷积核下采样,通过卷积运算,找到某种特征。
  • 全连接层: 变成一个向量,通过全连接,映射到10维即做分类。
  • 总目标: 由12828的张量空间转换成输出10维的向量。
    在这里插入图片描述

2、卷积

图像到底是什么?每次取一小块,一次遍历所有图像。
在这里插入图片描述

I 卷积运算过程

单通道: 从1 * 5 * 5 输入中拿出 3 * 3 框与核做卷积(数乘),对应元素相乘求和,得到第一个元素的结果,再将框移动,做相应的运算,以此类推。

在这里插入图片描述

三通道: 每一个通道匹配一个核,即核与通道的数量要一样。

在这里插入图片描述
在这里插入图片描述

多个垒起来,输入 n * w * h,输出 m * w * h,得到多个输出。

在这里插入图片描述
在这里插入图片描述

代码实现:

import torch 
in_channels, out_channels = 5, 10 # n 输入的维度, m 输出的维度
width, height = 100, 100 # 图像大小
kernel_size = 3 # 卷积核的大小
batch_size = 1 # pytorch中输入必须是小批量的数据

# 卷积层对输入的通道数有要求
# 取随机数,随机采样
input = torch.randn(batch_size, in_channels, width, height)
# 卷积对象,torch.nn.Conv2d对由多个输入平面组成的输入信号进行二维卷积
# 三个参数,输入通道,输出通道,卷积核的大小
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)

# 卷积层
output = conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

输出:

torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3]) # 输出通道 输入通道 卷积核大小

II padding

5 * 5 和 3 * 3 的卷积核 得到 3 * 3,但是希望图像大小不变,得到 5 * 5
把图像周围填充成 7 * 7 的,就可以了。

在这里插入图片描述
代码实现:

import torch

input = [3,4,6,5,7,
		 2,4,6,8,2,
		 1,6,7,8,4,
		 9,7,4,6,2,
		 3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5) # B C W H
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
# 不需要偏置量,所以设置为False
kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3) # O I W H
# 卷积层权重的初始化
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

输出:

tensor([[[[ 91., 168., 224., 215., 127.],
          [114., 211., 295., 262., 149.],
          [192., 259., 282., 214., 122.],
          [194., 251., 253., 169.,  86.],
          [ 96., 112., 110.,  68.,  31.]]]], grad_fn=<ConvolutionBackward0>)

III stride=2 步长为2,有效降低图像的W H

在这里插入图片描述
代码实现:

import torch

input = [3,4,6,5,7,
		 2,4,6,8,2,
		 1,6,7,8,4,
		 9,7,4,6,2,
		 3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5) # B C W H
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3) # O I W H
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

输出:

tensor([[[[211., 262.],
          [251., 169.]]]], grad_fn=<ConvolutionBackward0>)

IV 下采样 max pooling layer 最大池化层,没有w,2 * 2的max pooling,默认stride=2

把 4 * 4 分成 2 * 2一组,拿出最大值拼成一个新的 2 * 2 输出,通道数量不变,图像大小变为原来的一半(长宽一半)。
在这里插入图片描述
代码实现:

import torch

input = [3,4,6,5,
		 2,4,6,8,
		 1,6,7,5,
		 9,7,4,6,
		 ]
input = torch.Tensor(input).view(1, 1, 4, 4)

maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2) # 默认stride=2

output = maxpooling_layer(input)
print(output)

输出:

tensor([[[[4., 8.],
          [9., 7.]]]])

V 运算迁移到GPU

1、模型迁移到GPU

model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(torch.cuda.is_available())
model.to(device)

2、输入和数据迁移,数据要放在同一块显卡上

inputs, target = data
# 将要计算的张量也迁移到GPU上——输入和输出
inputs, target = inputs.to(device), target.to(device)

3、测试也迁移一下

images, labels = data
# 测试中的张量也迁移到GPU上
images, labels = images.to(device), labels.to(device)

3、一个简单的卷积神经网络示例:利用卷积神经网络来处理Minist数据集

计算过程:

  • 输入 1 * 28 * 28
  • 卷积 28-5+1=24 得到 10 * 24 * 24
  • 池化 10 * 12 * 12
  • 卷积 12-5+1=8 得到 20 * 8 * 8
  • 池化 20 * 4 * 4=320
  • 全连接 映射到 10
    在这里插入图片描述
    把全连接网络改成卷积神经网络即可
    在这里插入图片描述
    代码实现:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=False)

# 2、建立模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        batch_size = x.size(0) # x的第0维就是batch_size
        x = F.relu(self.pooling(self.conv1(x))) # 修正与池化顺序反了但是不影响
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x


model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(torch.cuda.is_available())
model.to(device)

# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 4、定义训练函数
def train(epoch):
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将要计算的张量也迁移到GPU上——输入和输出
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0

# 5、定义测试函数
accuracy = []
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 测试中的张量也迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 两个张量比较,得出的是其中相等的元素的个数(即一个批次中预测正确的个数)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test  set: %d %%' % (100 * correct / total))
    accuracy.append(100 * correct / total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("epoch")
    plt.ylabel("Accuracy")
    plt.show()

输出:

[1,   300] loss: 0.556
[1,   600] loss: 0.185
[1,   900] loss: 0.134
Accuracy on test  set: 96 %
[2,   300] loss: 0.107
[2,   600] loss: 0.094
[2,   900] loss: 0.087
Accuracy on test  set: 97 %
[3,   300] loss: 0.077
[3,   600] loss: 0.075
[3,   900] loss: 0.071
Accuracy on test  set: 98 %
[4,   300] loss: 0.066
[4,   600] loss: 0.063
[4,   900] loss: 0.058
Accuracy on test  set: 98 %
[5,   300] loss: 0.058
[5,   600] loss: 0.054
[5,   900] loss: 0.056
Accuracy on test  set: 98 %
[6,   300] loss: 0.054
[6,   600] loss: 0.050
[6,   900] loss: 0.046
Accuracy on test  set: 98 %
[7,   300] loss: 0.044
[7,   600] loss: 0.046
[7,   900] loss: 0.045
Accuracy on test  set: 98 %
[8,   300] loss: 0.037
[8,   600] loss: 0.047
[8,   900] loss: 0.043
Accuracy on test  set: 98 %
[9,   300] loss: 0.039
[9,   600] loss: 0.042
[9,   900] loss: 0.036
Accuracy on test  set: 98 %
[10,   300] loss: 0.033
[10,   600] loss: 0.039
[10,   900] loss: 0.037
Accuracy on test  set: 98 %
[96.98, 97.46, 98.21, 98.03, 98.38, 98.53, 98.5, 98.4, 98.61, 98.89]

在这里插入图片描述

利用显卡加速运算过程,由错误率3%降到了2%。

4、作业:都变成3个,比较不同CNN之间的差别

在这里插入图片描述

计算过程:

  • 输入 1 * 28 * 28
  • 卷积 28-5+1=24 得到 16 * 24 * 24
  • 池化 16 * 12 * 12
  • 卷积 12-5+1=8 得到 32 * 8 * 8
  • 池化 20 * 4 * 4
  • 卷积 4-3+1=2 得到 64 * 2 * 2
  • 池化 64 * 1 * 1
  • 全连接 64 到 32 到 16 到 10

代码实现:

将网络模型更改成如下即可

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)
        self.conv3 = torch.nn.Conv2d(32, 64, kernel_size=3)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc1 = torch.nn.Linear(64, 32)
        self.fc2 = torch.nn.Linear(32, 16)
        self.fc3 = torch.nn.Linear(16, 10)

    def forward(self, x):
        # x的第0维就是batch_size
        batch_size = x.size(0)
        x = self.pooling(F.relu(self.conv1(x)))
        x = self.pooling(F.relu(self.conv2(x)))
        x = self.pooling(F.relu(self.conv3(x)))
        x = x.view(batch_size, -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

输出:

[1,   300] loss: 2.268
[1,   600] loss: 1.135
[1,   900] loss: 0.331
Accuracy on test  set: 89 %
[2,   300] loss: 0.198
[2,   600] loss: 0.165
[2,   900] loss: 0.133
Accuracy on test  set: 96 %
[3,   300] loss: 0.107
[3,   600] loss: 0.106
[3,   900] loss: 0.095
Accuracy on test  set: 97 %
[4,   300] loss: 0.081
[4,   600] loss: 0.077
[4,   900] loss: 0.078
Accuracy on test  set: 97 %
[5,   300] loss: 0.063
[5,   600] loss: 0.063
[5,   900] loss: 0.065
Accuracy on test  set: 98 %
[6,   300] loss: 0.058
[6,   600] loss: 0.051
[6,   900] loss: 0.052
Accuracy on test  set: 98 %
[7,   300] loss: 0.040
[7,   600] loss: 0.051
[7,   900] loss: 0.046
Accuracy on test  set: 98 %
[8,   300] loss: 0.040
[8,   600] loss: 0.042
[8,   900] loss: 0.039
Accuracy on test  set: 98 %
[9,   300] loss: 0.040
[9,   600] loss: 0.038
[9,   900] loss: 0.036
Accuracy on test  set: 98 %
[10,   300] loss: 0.034
[10,   600] loss: 0.034
[10,   900] loss: 0.031
Accuracy on test  set: 98 %
[89.86, 96.93, 97.7, 97.59, 98.44, 98.63, 98.31, 98.2, 98.77, 98.74]

在这里插入图片描述
好像也没啥差别…

  • 3
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白*进阶ing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值