ABC202F - Integer Convex Hull 题解

本文同步发表在 hexo 博客

Description

平面内 N N N 个坐标均为整数的点,其中任意三点不共线,令所有点 P i P_i Pi 构成一个全集 U U U,子集 S ⊆ U S\subseteq U SU ∣ S ∣ ≥ 3 |S|\ge 3 S3。问凸包面积为整数的子集 S S S 的个数模 1 0 9 + 7 10^9 + 7 109+7 的值。

3 ≤ N ≤ 80 3\le N\le 80 3N80

Solution

比较神奇的题目。

考虑 Andrew 算法的执行流程:将所有点按照先 x x x 轴升序后 y y y 轴升序排序,然后从左往右弄出下凸包,再从右往左弄出上凸包。本题可以利用类似的思路。

然后我们由叉积计算面积的方法知道,整点三角形的面积乘二之后必然是整数。于是我们考虑依次用三角形弄出凸包,具体地,可以 dp:

  • O ( n ) O(n) O(n) 枚举凸包最左端的端点 P s P_{s} Ps

  • u p p e r i , j k \mathrm{upper}_{i,jk} upperi,jk:凸包满足如下条件的点集 S S S 的数量:

    • P s P_s Ps 顺时针考虑每个点,最后两个分别是 P i P_i Pi P j P_j Pj
    • 所有的点都在直线 P s P j P_sP_j PsPj 以上;
    • 面积乘以二之后模二为 k k k
  • l o w e r i , j , k \mathrm{lower}_{i,j,k} loweri,j,k:凸包满足如下条件的点集 S S S 的数量:

    • P s P_s Ps 逆时针考虑每个点,最后两个分别是 P i P_i Pi P j P_j Pj
    • 所有的点都在直线 P s P j P_sP_j PsPj 以下;
    • 面积乘以二之后模二为 k k k
  • 确定每个最右端的点 P j P_j Pj,然后枚举 i i i k k k 统计答案:
    a n s s = ∑ j = s + 1 n ∑ k ∈ { 0 , 1 } ( ∑ i u p p e r i , j , k × ∑ i l o w e r i , j , k ) \mathrm{ans}_s = \sum_{j = s + 1}^n\sum_{k \in \{0, 1\}}\left(\sum_{i}\mathrm{upper}_{i,j,k} \times \sum_{i}\mathrm{lower_{i,j,k}} \right) anss=j=s+1nk{0,1}(iupperi,j,k×iloweri,j,k)

这样做的原理其实就是合并上下凸壳:根据上面设计的 dp 状态可知我们确定了左端点 P s P_s Ps 和右端点 P j P_j Pj 后,满足上凸壳的点集个数即为枚举倒数第二个点 i i i 然后求和的结果 ∑ i u p p e r i , j , k \sum_{i}\mathrm{upper}_{i,j,k} iupperi,j,k,满足下凸壳的点集个数即为 ∑ i l o w e r i , j , k \sum_i\mathrm{lower}_{i,j,k} iloweri,j,k

怎么计算 u p p e r \mathrm{upper} upper l o w e r \mathrm{lower} lower 呢?我们可以通过 u p p e r i , j , k \mathrm{upper}_{i,j,k} upperi,j,k 递推出 u p p e r j , l , k \mathrm{upper}_{j,l,k} upperj,l,k,其原理就是判断 P l P_l Pl 能否被加入凸壳中,能则更新,不能就更新 l o w e r j , l , k \mathrm{lower}_{j,l,k} lowerj,l,k(加入下凸壳)。新加入的部分即为 △ P s P j P l \triangle P_sP_jP_l PsPjPl,需要根据这个面积的二倍的奇偶性判断更新哪个 k k k

这个做法要求我们提前预处理每个三角形的面积的二倍的奇偶性 p a r i t y i , j , k \mathrm{parity}_{i,j,k} parityi,j,k 和三角形内点的个数 i n s i d e i , j , k \mathrm{inside}_{i,j,k} insidei,j,k。总时间复杂度 O ( n 4 ) O(n^4) O(n4)

#include <cstdio>
#include <cctype>
#include <cmath>
#include <algorithm>
#define il inline
#define FOR(i, a, b) for (int i = a; i <= b; ++i)
#define DEC(i, a, b) for (int i = a; i >= b; --i)

const int maxn = 85;

int read()
{
    int s = 0, x = 0;
    char c = getchar();
    while (!isdigit(c))
        x |= (c == '-'), c = getchar();
    while (isdigit(c))
        s = s * 10 + c - '0', c = getchar();
    return x ? -s : s;
}

struct Point
{
    int x, y;
    Point() {}
    Point(int _x, int _y) {x = _x, y = _y;}
    il bool operator<(const Point &b) const {return x == b.x ? y < b.y : x < b.x;}
} P[maxn];

typedef Point Vector;

struct modint
{
    typedef long long ll;
    const static ll mod = 1e9 + 7;
    ll val;
    modint(int _val = 0) {val = _val;}
    modint operator+(const modint &b) const {return modint((val + b.val) % mod);}
    modint operator-(const modint &b) const {return modint((val - b.val + mod) % mod);}
    modint operator*(const modint &b) const {return modint((val * b.val) % mod);}
    modint operator+=(const modint &b) {return *this = *this + b;}
    modint operator*=(const modint &b) {return *this = *this * b;}
    modint operator-=(const modint &b) {return *this = *this - b;}
    modint operator+(const int &b) const {return modint((val + b) % mod);}
    modint operator-(const int &b) const {return modint((val - b + mod) % mod);}
    modint operator*(const int &b) const {return modint((val * b) % mod);}
    modint operator+=(const int &b) {return *this = *this + b;}
    modint operator-=(const int &b) {return *this = *this - b;}
    modint operator*=(const int &b) {return *this = *this * b;}
};

il Vector operator-(const Point &a, const Point &b) {return Point(b.x - a.x, b.y - a.y);}
il int operator^(const Vector &a, const Vector &b) {return a.x * b.y - a.y * b.x;}//叉积

int area2(Point x, Point y, Point z)//返回面积的二倍
{
    return abs((y - x) ^ (z - x));
}

int n, parity[maxn][maxn][maxn], inside[maxn][maxn][maxn];
modint pow2[maxn], upper[maxn][maxn][2], lower[maxn][maxn][2];

int main()
{
    n = read();
    FOR(i, 1, n) P[i].x = read(), P[i].y = read();
    std::sort(P + 1, P + n + 1);//对点进行排序

    FOR(i, 1, n)
        FOR(j, 1, n)
            FOR(k, 1, n)
            {
                if (i == j || j == k || i == k) continue;
                parity[i][j][k] = area2(P[i], P[j], P[k]) % 2;//更新面积奇偶性
                FOR(l, 1, n)//枚举每个 l 点判断 l 在不在三角形内
                    if (l != i && l != j && l != k && area2(P[i], P[j], P[k]) == area2(P[l], P[j], P[k]) + area2(P[i], P[l], P[k]) + area2(P[i], P[j], P[l]))
                        inside[i][j][k] += 1;
            }
    

    pow2[0] = 1;
    FOR(i, 1, n) pow2[i] = pow2[i - 1] * 2;//预处理二的次幂

    modint ans = 0;

    DEC(must, n, 1)//枚举最左边的端点
    {
        FOR(i, must, n)
            FOR(j, must, n)
                FOR(k, 0, 1)
                    upper[i][j][k] = lower[i][j][k] = 0;//清空数组
        FOR(i, must + 1, n) upper[must][i][0] = lower[must][i][0] = 1;//边界条件
        FOR(i, must, n)
            FOR(j, must + 1, n)
                FOR(k, 0, 1)
                    FOR(l, j + 1, n)
                        if (((P[l] - P[j]) ^ (P[j] - P[i])) > 0)//加入上凸壳
                            upper[j][l][k ^ parity[must][j][l]] += upper[i][j][k] * pow2[inside[must][j][l]];//乘法原理
                        else lower[j][l][k ^ parity[must][j][l]] += lower[i][j][k] * pow2[inside[must][j][l]];
        FOR(j, must + 1, n)//枚举最右端点
            FOR(k, 0, 1)
            {
                modint up = 0, lo = 0;//上下凸壳
                FOR(i, must, j - 1)
                    up += upper[i][j][k], lo += lower[i][j][k];
                ans += up * lo;
            }
    }

    printf("%d\n", (ans - n * (n - 1) / 2).val);//最后要去除线段的贡献
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值