Pytorch---Pytorch进行自定义Dataset

一、Pytorch自定义Dataset的步骤:

  • 继承torch.util.data.Dataset
  • 实现__getitem__方法
  • 实现__len__方法

二、Pytorch自定义Dataset的代码:

from torch.utils import data
from PIL import Image
from torchvision import transforms
import glob
import matplotlib.pyplot as plt


class MyDataset(data.Dataset):
    def __init__(self, image_paths, labels, transform):
        self.images = image_paths
        self.labels = labels
        self.transforms = transform

    def __getitem__(self, index):
        img = self.images[index]
        label = self.labels[index]

        pil_img = Image.open(img)
        pil_img = pil_img.convert('RGB')
        result = self.transforms(pil_img)

        return result, label

    def __len__(self):
        return len(self.images)

三、进行结果的展示

from torch.utils import data
from PIL import Image
from torchvision import transforms
import glob
import matplotlib.pyplot as plt

if __name__ == '__main__':
    images_path = glob.glob(r'dataset2/*.jpg')
    classes = ['cloudy', 'rain', 'shine', 'sunrise']
    classes_to_index = dict((cla, i) for i, cla in enumerate(classes))
    index_to_classes = dict((v, k) for k, v in classes_to_index.items())
    all_labels = []
    for img in images_path:
        for i, c in enumerate(classes):
            if c in img:
                all_labels.append(i)
    transform = transforms.Compose([
        transforms.Resize((96, 96)),
        transforms.ToTensor()
    ])
    weather_dataset = MyDataset(images_path, all_labels, transform)
    weather_dataloader = data.DataLoader(dataset=weather_dataset, batch_size=16, shuffle=True)
    imgs, labels = next(iter(weather_dataloader))
    plt.figure(figsize=(12, 8))
    for i, (imgg, labell) in enumerate(zip(imgs[:6], labels[:6])):
        imgg = imgg.permute(1, 2, 0).numpy()
        plt.subplot(2, 3, i + 1)
        plt.axis('off')
        plt.title(index_to_classes.get(labell.item()))
        plt.imshow(imgg)
    plt.savefig('result.png')
    plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水哥很水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值