不确定性推理:可信度计算
1、设有如下一组推理规则:
r1: IF E1 THEN E2 (0.6)
r2: IF E2 AND E3 THEN E4 (0.7)
r3: IF E4 THEN H (0.8)
r4: IF E5 THEN H (0.9)
且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=?
解:
(1) 先由r1求CF(E2)
CF(E2)=0.6 × max{0,CF(E1)}=0.6 × max{0,0.5}=0.3
(2) 再由r2求CF(E4)
CF(E4)=0.7×max{0,min{CF(E2 ),CF(E3 )}}=0.7 × max{0, min{0.3, 0.6}}=0.21
(3) 再由r3求CF1(H) CF1(H)= 0.8*max{0,CF(E4)}=0.8 × max{0, 0.21)}=0.168
(4) 再由r4求CF2(H) CF2(H)= 0.9×max{0,CF(E5)}=0.9 ×max{0, 0.7)}=0.63
(5) 最后对CF1(H )和CF2(H)进行合成,求CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692
2、设有如下一组产生式规则和证据事实, 试用确定性理论求出CF(E)。
规则:
① if A then B(0.9)
② if B and C then D(0.8)
③ if A and C then D(0.7)
④ if B or D then E(0.6) 事实: A,CF(A)=0.8;C,CF©=0.9
解:
由规则①得:CF(B)=0.9×0.8=0.72
由规则②得:CF(D)1=0.8×min{0.72,0.9}=0.8×0.72=0.576
由规则③得:CF(D)2=0.7×min{0.8,0.9} =0.7×0.8=0.56 从而 CF(D)=CF(D)1+CF(D)2-CF(D)1×CF(D)2 =0.576+0.56-0.576×0.56=0.81344
由规则④得:CF(E)=0.6×max{0.72,0.81344} =0.6×0.81344=0.488064