不确定性推理:可信度计算

不确定性推理:可信度计算

1、设有如下一组推理规则:     
 r1:  IF  E1  THEN  E2 (0.6)     
 r2:  IF  E2  AND  E3  THEN  E4 (0.7)     
 r3:  IF  E4  THEN  H (0.8)     
 r4:  IF  E5  THEN  H (0.9) 
 且已知CF(E1)=0.5,  CF(E3)=0.6,  CF(E5)=0.7。求CF(H)=?
     
 解:
(1) 先由r1求CF(E2)         
CF(E2)=0.6 × max{0,CF(E1)}=0.6 × max{0,0.5}=0.3 
(2) 再由r2求CF(E4)         
CF(E4)=0.7×max{0,min{CF(E2 ),CF(E3 )}}=0.7 × max{0, min{0.3, 0.6}}=0.21 
(3) 再由r3求CF1(H) CF1(H)= 0.8*max{0,CF(E4)}=0.8 × max{0, 0.21)}=0.168 
(4) 再由r4求CF2(H) CF2(H)= 0.9×max{0,CF(E5)}=0.9 ×max{0, 0.7)}=0.63 
(5) 最后对CF1(H )和CF2(H)进行合成,求CF(H)         CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H)           =0.692

2、设有如下一组产生式规则和证据事实, 试用确定性理论求出CF(E)。 
规则: 
① if A then B(0.9) 
② if B and C then D(0.8) 
③ if A and C then D(0.7) 
④ if B or D then E(0.6) 事实: A,CF(A)=0.8;C,CF©=0.9

 解:
 由规则①得:CF(B)=0.9×0.8=0.72 
 由规则②得:CF(D)1=0.8×min{0.72,0.9}=0.8×0.72=0.576 
 由规则③得:CF(D)2=0.7×min{0.8,0.9} =0.7×0.8=0.56  从而  CF(D)=CF(D)1+CF(D)2-CF(D)1×CF(D)2 =0.576+0.56-0.576×0.56=0.81344 
 由规则④得:CF(E)=0.6×max{0.72,0.81344} =0.6×0.81344=0.488064

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值